1,178 research outputs found

    Suboptimal greedy power allocation schemes for discrete bit loading

    Get PDF
    In this paper we consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes, while greatly reducing complexity, perform best in two separate and distinct SNR regions

    Suboptimal greedy power allocation schemes for discrete bit loading

    Get PDF
    In this paper we consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes, while greatly reducing complexity, perform best in two separate and distinct SNR regions

    Greedy power allocation for multicarrier systems with reduced complexity

    Get PDF
    In this paper we consider a reduced complexity discrete bit loading for Multicarrier systems based on the greedy power allocation (GPA) under the constraints of transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subcarriers only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given BER. We demonstrate how these schemes can reduce complexity. Two of the proposed algorithms can achieve near optimal performance by including a transfer of residual power between groups at the expense of a very small extra cost. It is shown that the two near optimal schemes,while greatly reducing complexity, perform best in two separate and distinct SNR regions

    Suboptimal greedy power allocation schemes for discrete bit loading

    Get PDF
    In this paper we consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes, while greatly reducing complexity, perform best in two separate and distinct SNR regions

    Reduced complexity schemes to greedy power allocation for multicarrier systems

    Get PDF
    Discrete bit loading for multicarrier systems based on the greedy power allocation (GPA) algorithm is considered in this paper. A new suboptimal scheme that independently performs GPA on groups of subcarriers and therefore can significantly reduce complexity compared to the standard GPA is proposed. These groups are formed in an initial step of a uniform power allocation (UPA) algorithm. In order to more efficiently allocate the available transmit power, two power re-distribution algorithms are further introduced by including a transfer of residual power between groups. Simulation results show that the two proposed algorithms can achieve near optimal performance in two separate and distinctive SNR regions. We demonstrate by analysis how these methods can greatly simplify the computational complexity of the GPA algorithm

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    A new low-cost discrete bit loading using greedy power allocation

    Get PDF
    In this paper we consider a low cost bit loading based on the greedy power allocation (GPA). Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are suggested, which perform GPA on subsets of subchannels only. We demonstrate how these schemes can reduce complexity. Two of the proposed algorithms can achieve near optimal performance by including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes perform best in two separate and distinct SNR regions

    Incremental rate maximisation power loading with BER improvements

    Get PDF
    This paper aims to maximise the rate over a MIMO link using incremental power and bit allocation. Two different schemes, greedy power allocation (GPA) and greedy bit allocation (GBA), are addressed and compared with the standard uniform power allocation (UPA). The design is constrained by the target BER, the total power budget, and fixed discrete modulation orders. We demonstrate through simulations that GPA outperforms GBA in terms of throughput and power conservation,while GBA is advantageouswhen a lower BER is beneficial. Once the design constraints are satisfied, remaining power is utilised in two possible ways, leading to improved performance of GPA and UPA algorithms. This redistribution is analysed for fairness in BER performance across all active subchannels using a bisection method

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006
    corecore