5,321 research outputs found

    Efficient Two-Level Swarm Intelligence Approach for Multiple Sequence Alignment

    Get PDF
    This paper proposes two-level particle swarm optimization (TL-PSO), an efficient PSO variant that addresses two levels of optimization problem. Level one works on optimizing dimension for entire swarm, whereas level two works for optimizing each particle's position. The issue addressed here is one of the most challenging multiple sequence alignment (MSA) problem. TL-PSO deals with the arduous task of determination of exact sequence length with most suitable gap positions in MSA. The two levels considered here are: to obtain optimal sequence length in level one and to attain optimum gap positions for maximal alignment score in level two. The performance of TL-PSO has been assessed through a comparative study with two kinds of benchmark dataset of DNA and RNA. The efficiency of the proposed approach is evaluated with four popular scoring schemes at specific parameters. TL-PSO alignments are compared with four PSO variants, i.e. S-PSO, M-PSO, ED-MPSO and CPSO-Sk, and two leading alignment software, i.e. ClustalW and T-Coffee, at different alignment scores. Hence obtained results prove the competence of TL-PSO at accuracy aspects and conclude better score scheme

    Physics-Based Swarm Intelligence for Disaster Relief Communications

    Get PDF
    This study explores how a swarm of aerial mobile vehicles can provide network connectivity and meet the stringent requirements of public protection and disaster relief operations. In this context, we design a physics-based controlled mobility strategy, which we name the extended Virtual Force Protocol (VFPe), allowing self-propelled nodes, and in particular here unmanned aerial vehicles, to fly autonomously and cooperatively. In this way, ground devices scattered on the operation site may establish communications through the wireless multi-hop communication routes formed by the network of aerial nodes. We further investigate through simulations the behavior of the VFPe protocol, notably focusing on the way node location information is disseminated into the network as well as on the impact of the number of exploration nodes on the overall network performance.Comment: in International Conference on Ad Hoc Networks and Wireless, Jul 2016, Lille, Franc

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544

    Solving multiple sequence alignment problems by using a swarm intelligent optimization based approach

    Get PDF
    In this article, the alignment of multiple sequences is examined through swarm intelligence based an improved particle swarm optimization (PSO). A random heuristic technique for solving discrete optimization problems and realistic estimation was recently discovered in PSO. The PSO approach is a nature-inspired technique based on intelligence and swarm movement. Thus, each solution is encoded as “chromosomes” in the genetic algorithm (GA). Based on the optimization of the objective function, the fitness function is designed to maximize the suitable components of the sequence and reduce the unsuitable components of the sequence. The availability of a public benchmark data set such as the Bali base is seen as an assessment of the proposed system performance, with the potential for PSO to reveal problems in adapting to better performance. This proposed system is compared with few existing approaches such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) alignment (DIALIGN), PILEUP8, hidden Markov model training (HMMT), rubber band technique-genetic algorithm (RBT-GA) and ML-PIMA. In many cases, the experimental results are well implemented in the proposed system compared to other existing approaches

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics
    corecore