27,495 research outputs found

    Fuzzy Dynamic Discrimination Algorithms for Distributed Knowledge Management Systems

    Get PDF
    A reduction of the algorithmic complexity of the fuzzy inference engine has the following property: the inputs (the fuzzy rules and the fuzzy facts) can be divided in two parts, one being relatively constant for a long a time (the fuzzy rule or the knowledge model) when it is compared to the second part (the fuzzy facts) for every inference cycle. The occurrence of certain transformations over the constant part makes sense, in order to decrease the solution procurement time, in the case that the second part varies, but it is known at certain moments in time. The transformations attained in advance are called pre-processing or knowledge compilation. The use of variables in a Business Rule Management System knowledge representation allows factorising knowledge, like in classical knowledge based systems. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques. It is, thus, necessary to define the description method of fuzzy knowledge, to justify the knowledge exploiting efficiency when the compiling technique is used, to present the inference engine and highlight the functional features of the pattern matching and the state space processes. This paper presents the main results of our project PR356 for designing a compiler for fuzzy knowledge, like Rete compiler, that comprises two main components: a static fuzzy discrimination structure (Fuzzy Unification Tree) and the Fuzzy Variables Linking Network. There are also presented the features of the elementary pattern matching process that is based on the compiled structure of fuzzy knowledge. We developed fuzzy discrimination algorithms for Distributed Knowledge Management Systems (DKMSs). The implementations have been elaborated in a prototype system FRCOM (Fuzzy Rule COMpiler).Fuzzy Unification Tree, Dynamic Discrimination of Fuzzy Sets, DKMS, FRCOM

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Unification and Matching on Compressed Terms

    Full text link
    Term unification plays an important role in many areas of computer science, especially in those related to logic. The universal mechanism of grammar-based compression for terms, in particular the so-called Singleton Tree Grammars (STG), have recently drawn considerable attention. Using STGs, terms of exponential size and height can be represented in linear space. Furthermore, the term representation by directed acyclic graphs (dags) can be efficiently simulated. The present paper is the result of an investigation on term unification and matching when the terms given as input are represented using different compression mechanisms for terms such as dags and Singleton Tree Grammars. We describe a polynomial time algorithm for context matching with dags, when the number of different context variables is fixed for the problem. For the same problem, NP-completeness is obtained when the terms are represented using the more general formalism of Singleton Tree Grammars. For first-order unification and matching polynomial time algorithms are presented, each of them improving previous results for those problems.Comment: This paper is posted at the Computing Research Repository (CoRR) as part of the process of submission to the journal ACM Transactions on Computational Logic (TOCL)

    Rapid Development of Morphological Descriptions for Full Language Processing Systems

    Full text link
    I describe a compiler and development environment for feature-augmented two-level morphology rules integrated into a full NLP system. The compiler is optimized for a class of languages including many or most European ones, and for rapid development and debugging of descriptions of new languages. The key design decision is to compose morphophonological and morphosyntactic information, but not the lexicon, when compiling the description. This results in typical compilation times of about a minute, and has allowed a reasonably full, feature-based description of French inflectional morphology to be developed in about a month by a linguist new to the system.Comment: 8 pages, LaTeX (2.09 preferred); eaclap.sty; Procs of Euro ACL-9

    Neutralino Dark Matter, b-tau Yukawa Unification and Non-Universal Sfermion Masses

    Full text link
    We study the implications of minimal non-Universal Boundary Conditions in the sfermion Soft SUSY Breaking (SSB) masses of mSUGRA. We impose asymptotic b-tau Yukawa coupling Unification and we resort to a parameterization of the deviation from Universality in the SSB motivated by the multiplet structure of SU(5) GUT. A set of cosmo-phenomenological constraints, including the recent results from WMAP, determines the allowed parameter space of the models under consideration. We highlight a new coannihilation corridor where neutralino-sbottom and neutralino-tau sneutrino-stau coannihilations significantly contribute to the reduction of the neutralino relic density.Comment: 38 pages, 27 Figures, Latex; Version accepted for publication in PR

    Linear Compressed Pattern Matching for Polynomial Rewriting (Extended Abstract)

    Full text link
    This paper is an extended abstract of an analysis of term rewriting where the terms in the rewrite rules as well as the term to be rewritten are compressed by a singleton tree grammar (STG). This form of compression is more general than node sharing or representing terms as dags since also partial trees (contexts) can be shared in the compression. In the first part efficient but complex algorithms for detecting applicability of a rewrite rule under STG-compression are constructed and analyzed. The second part applies these results to term rewriting sequences. The main result for submatching is that finding a redex of a left-linear rule can be performed in polynomial time under STG-compression. The main implications for rewriting and (single-position or parallel) rewriting steps are: (i) under STG-compression, n rewriting steps can be performed in nondeterministic polynomial time. (ii) under STG-compression and for left-linear rewrite rules a sequence of n rewriting steps can be performed in polynomial time, and (iii) for compressed rewrite rules where the left hand sides are either DAG-compressed or ground and STG-compressed, and an STG-compressed target term, n rewriting steps can be performed in polynomial time.Comment: In Proceedings TERMGRAPH 2013, arXiv:1302.599

    Simulation Subsumption or Déjà vu on the Web

    Get PDF
    Simulation unification is a special kind of unification adapted to retrieving semi-structured data on the Web. This article introduces simulation subsumption, or containment, that is, query subsumption under simulation unification. Simulation subsumption is crucial in general for query optimization, in particular for optimizing pattern-based search engines, and for the termination of recursive rule-based web languages such as the XML and RDF query language Xcerpt. This paper first motivates and formalizes simulation subsumption. Then, it establishes decidability of simulation subsumption for advanced query patterns featuring descendant constructs, regular expressions, negative subterms (or subterm exclusions), and multiple variable occurrences. Finally, we show that subsumption between two query terms can be decided in O(n!n) where n is the sum of the sizes of both query terms
    corecore