178 research outputs found

    WIMAX Basics from PHY Layer to Scheduling and Multicasting Approaches

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is an emerging broadband wireless technology for providing Last mile solutions for supporting higher bandwidth and multiple service classes with various quality of service requirement. The unique architecture of the WiMAX MAC and PHY layers that uses OFDMA to allocate multiple channels with different modulation schema and multiple time slots for each channel allows better adaptation of heterogeneous user’s requirements. The main architecture in WiMAX uses PMP (Point to Multipoint), Mesh mode or the new MMR (Mobile Multi hop Mode) deployments where scheduling and multicasting have different approaches. In PMP SS (Subscriber Station) connects directly to BS (Base Station) in a single hop route so channel conditions adaptations and supporting QoS for classes of services is the key points in scheduling, admission control or multicasting, while in Mesh networks SS connects to other SS Stations or to the BS in a multi hop routes, the MMR mode extends the PMP mode in which the SS connects to either a relay station (RS) or to Bs. Both MMR and Mesh uses centralized or distributed scheduling with multicasting schemas based on scheduling trees for routing. In this paper a broad study is conducted About WiMAX technology PMP and Mesh deployments from main physical layers features with differentiation of MAC layer features to scheduling and multicasting approaches in both modes of operations

    IEEE 802.16e 에서 멀티ìșìŠ€íŠž MAP 의 횚윚적 ì „ì†Ą êž°ëȕ

    Get PDF
    The IEEE 802.16e suggests the use of multicast sub-MAPs whose messages are differently encoded according to the operating condition. In this case, it is desired for the base station to properly choose a modulation and coding set (MCS) associated with operating condition. In this paper, we consider the use of an adaptive modulation coding (AMC) scheme for the multicast sub-MAP that achieves the same MAP coverage as the broadcast MAP while minimizing the signaling overhead. We consider the adjustment of the threshold for the AMC according to the channel condition without explicit information on the channel condition, significantly reducing the amount of the signaling overhead. Simulation results show that when it is applied to voice-over-IP (VoIP) services, the proposed scheme can enhance the VoIP capacity

    Handover analysis over mobile WiMAX technology.

    Get PDF
    As new mobile devices and mobile applications continue to growth, so does the data traffic demand for broadband services access and the user needs toward mobility, thereby, wireless application became today the fastest solution and lowest cost implementation unlike traditional wired deployment such as optical fibers and digital lines. WiMAX technology satisfies this gap through its high network performance over the air interface and high data rates based on the IEEE 802.16-2004 standards, this original specification does not support mobility. Therefore, the IEEE introduces a new standard that enables mobility profiles under 802.16e-2005, from which three different types of handovers process are introduced as hard handover (HHO), macro diversity handover (MDHO) and fast base station switching (FBSS) handover. The objective of this master thesis is to analyze how the handover process affects network performance. The analysis propose three scenarios, built over OPNET simulator to measure the most critical wireless parameter and performance indicator such as throughput, handover success rate, packet drop, delay and network usage.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure

    Quality of service and resource management in IP and wireless networks

    Get PDF
    A common theme in the publications included in this thesis is the quality of service and resource management in IP and wireless networks. This thesis presents novel algorithms and implementations for admission control in IP and IEEE 802.16e networks, active queue management in EGPRS, WCDMA, and IEEE 802.16e networks, and scheduling in IEEE 802.16e networks. The performance of different algorithms and mechanisms is compared with the prior art through extensive ns-2 simulations. We show that similar active queue management mechanisms, such as TTLRED, can be successfully used to reduce the downlink delay (and in some cases even improve the TCP goodput) in different bottlenecks of IP, EGPRS, WCDMA, and IEEE 802.16e access networks. Moreover, almost identical connection admission control algorithms can be applied both in IP access networks and at IEEE 802.16e base stations. In the former case, one just has to first gather the link load information from the IP routers. We also note that DiffServ can be used to avoid costly overprovisioning of the backhaul in IEEE 802.16e networks. We present a simple mapping between IEEE 802.16e data delivery services and DiffServ traffic classes, and we propose that IEEE 802.16e base stations should take the backhaul traffic load into account in their admission control decisions. Moreover, different IEEE 802.16e base station scheduling algorithms and uplink channel access mechanisms are studied. In the former study, we show that proportional fair scheduling offers superior spectral efficiency when compared to deficit round-robin, though in some cases at the cost of increased delay. Additionally, we introduce a variant of deficit round-robin (WDRR), where the quantum value depends on the modulation and coding scheme. We also show that there are several ways to implement ertPS in an efficient manner, so that during the silence periods of a VoIP call no uplink slots are granted. The problem here, however, is how to implement the resumption after the silence period while introducing as little delay as possible

    Energy efficiency in next generation wireless networks: methodologies, solutions and algorithms

    Get PDF
    Mobile Broadband Wireless Access (BWA) networks will offer in the forthcoming years multiple and differentiated services to users with high mobility requirements, connecting via portable or wearable devices which rely on the use of batteries by necessity. Since such devices consume a relatively large fraction of energy for transmitting/receiving data over-the-air, mechanisms are needed to reduce power consumption, in order to increase the lifetime of devices and hence improve user’s satisfaction. Next generation wireless network standards define power saving functions at the Medium Access Control (MAC) layer, which allow user terminals to switch off the radio transceiver during open traffic sessions for greatest energy consumption reduction. However, enabling power saving usually increases the transmission latency, which can negatively affect the Quality of Service (QoS) experienced by users. On the other hand, imposing stringent QoS requirements may limit the amount of energy that can be saved. The IEEE 802.16e standard defines the sleep mode is power saving mechanism with the purpose of reducing energy consumption. Three different operation classes are provided, each one to serve different class of traffic: class I, best effort traffic, class II real time traffic and class III multicast traffic. Several aspects of the sleep mode are left unspecified, as it is usually done in standards, allowing manufacturers to implement their own proprietary solutions, thus gaining a competitive advantage over the rivals. The work of this thesis is aimed at verifying, the effectiveness of the power saving mechanism proposed into IEEE 802.16e standard, focusing on the mutual interaction between power saving and QoS support. Two types of delay constrained applications with different requirements are considered, i.e., Web and Voice over IP (VoIP). The performance is assessed via detailed packet-level simulation, with respect to several system parameters. To capture the relative contribution of all the factors on the energy- and QoS-related metrics, part of the evaluation is carried out by means of 2k · r! analysis. Our study shows that the sleep mode can achieve significant power consumption reduction, however, when real time traffic is considered a wise configuration of the parameters is mandatory in order to avoid unacceptable degradation of the QoS. Finally, based on the guidelines drawn through the analysis, we extend our contribution beyond a simple evaluation, proposing a power saving aware scheduling framework aimed at reducing further the energy consumption. Our framework integrates with existing scheduling policies that can pursue their original goals, e.g. maximizing throughput or fairness, while improving the energy efficiency of the user terminals. Its effectiveness is assessed through an extensive packet level simulation campaign

    Interpretation of IEEE 802.16e (WiMAX)

    Get PDF
    The development of 802.16 standards for Broadband Wireless Access technologies was motivated by the rapidly growing need for high-speed, ubiquitous and cost-effective access. The limitations of conventional Broadband wireless access have been overcome with the scalable features of WiMAX. The aim of this paper is to analyse all compulsory features of the WiMAX OFDM physical layer specified in IEEE 802.16e. This paper gives an overview about the WiMAX standard and studies the performance of a WiMAX transmitter and receiver. This is done in order to study the WiMAX network practically. WiMAX network is implemented and analysed in great detail with the help of simulation results. Simulation is performed in the Matlab simulink
    • 

    corecore