563 research outputs found

    Gossip Codes for Fingerprinting: Construction, Erasure Analysis and Pirate Tracing

    Full text link
    This work presents two new construction techniques for q-ary Gossip codes from tdesigns and Traceability schemes. These Gossip codes achieve the shortest code length specified in terms of code parameters and can withstand erasures in digital fingerprinting applications. This work presents the construction of embedded Gossip codes for extending an existing Gossip code into a bigger code. It discusses the construction of concatenated codes and realisation of erasure model through concatenated codes.Comment: 28 page

    Enhanced blind decoding of Tardos codes with new map-based functions

    Get PDF
    This paper presents a new decoder for probabilistic binary traitor tracing codes under the marking assumption. It is based on a binary hypothesis testing rule which integrates a collusion channel relaxation so as to obtain numerical and simple accusation functions. This decoder is blind as no estimation of the collusion channel prior to the accusation is required. Experimentations show that using the proposed decoder gives better performance than the well-known symmetric version of the Tardos decoder for common attack channels

    Efficient Probabilistic Group Testing Based on Traitor Tracing

    Get PDF
    Inspired by recent results from collusion-resistant traitor tracing, we provide a framework for constructing efficient probabilistic group testing schemes. In the traditional group testing model, our scheme asymptotically requires T ~ 2 K ln N tests to find (with high probability) the correct set of K defectives out of N items. The framework is also applied to several noisy group testing and threshold group testing models, often leading to improvements over previously known results, but we emphasize that this framework can be applied to other variants of the classical model as well, both in adaptive and in non-adaptive settings.Comment: 8 pages, 3 figures, 1 tabl

    Dynamic Traitor Tracing for Arbitrary Alphabets: Divide and Conquer

    Get PDF
    We give a generic divide-and-conquer approach for constructing collusion-resistant probabilistic dynamic traitor tracing schemes with larger alphabets from schemes with smaller alphabets. This construction offers a linear tradeoff between the alphabet size and the codelength. In particular, we show that applying our results to the binary dynamic Tardos scheme of Laarhoven et al. leads to schemes that are shorter by a factor equal to half the alphabet size. Asymptotically, these codelengths correspond, up to a constant factor, to the fingerprinting capacity for static probabilistic schemes. This gives a hierarchy of probabilistic dynamic traitor tracing schemes, and bridges the gap between the low bandwidth, high codelength scheme of Laarhoven et al. and the high bandwidth, low codelength scheme of Fiat and Tassa.Comment: 6 pages, 1 figur

    Dynamic Traitor Tracing Schemes, Revisited

    Get PDF
    We revisit recent results from the area of collusion-resistant traitor tracing, and show how they can be combined and improved to obtain more efficient dynamic traitor tracing schemes. In particular, we show how the dynamic Tardos scheme of Laarhoven et al. can be combined with the optimized score functions of Oosterwijk et al. to trace coalitions much faster. If the attack strategy is known, in many cases the order of the code length goes down from quadratic to linear in the number of colluders, while if the attack is not known, we show how the interleaving defense may be used to catch all colluders about twice as fast as in the dynamic Tardos scheme. Some of these results also apply to the static traitor tracing setting where the attack strategy is known in advance, and to group testing.Comment: 7 pages, 1 figure (6 subfigures), 1 tabl

    Optimal sequential fingerprinting: Wald vs. Tardos

    Full text link
    We study sequential collusion-resistant fingerprinting, where the fingerprinting code is generated in advance but accusations may be made between rounds, and show that in this setting both the dynamic Tardos scheme and schemes building upon Wald's sequential probability ratio test (SPRT) are asymptotically optimal. We further compare these two approaches to sequential fingerprinting, highlighting differences between the two schemes. Based on these differences, we argue that Wald's scheme should in general be preferred over the dynamic Tardos scheme, even though both schemes have their merits. As a side result, we derive an optimal sequential group testing method for the classical model, which can easily be generalized to different group testing models.Comment: 12 pages, 10 figure

    Capacities and Capacity-Achieving Decoders for Various Fingerprinting Games

    Full text link
    Combining an information-theoretic approach to fingerprinting with a more constructive, statistical approach, we derive new results on the fingerprinting capacities for various informed settings, as well as new log-likelihood decoders with provable code lengths that asymptotically match these capacities. The simple decoder built against the interleaving attack is further shown to achieve the simple capacity for unknown attacks, and is argued to be an improved version of the recently proposed decoder of Oosterwijk et al. With this new universal decoder, cut-offs on the bias distribution function can finally be dismissed. Besides the application of these results to fingerprinting, a direct consequence of our results to group testing is that (i) a simple decoder asymptotically requires a factor 1.44 more tests to find defectives than a joint decoder, and (ii) the simple decoder presented in this paper provably achieves this bound.Comment: 13 pages, 2 figure
    corecore