23 research outputs found

    Intelligent transportation related complex systems and sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITSs) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    A Fast-Dehazing Technique using Generative Adversarial Network model for Illumination Adjustment in Hazy Videos

    Get PDF
    Haze significantly lowers the quality of the photos and videos that are taken. This might potentially be dangerous in addition to having an impact on the monitoring equipment' dependability. Recent years have seen an increase in issues brought on by foggy settings, necessitating the development of real-time dehazing techniques. Intelligent vision systems, such as surveillance and monitoring systems, rely fundamentally on the characteristics of the input pictures having a significant impact on the accuracy of the object detection. This paper presents a fast video dehazing technique using Generative Adversarial Network (GAN) model. The haze in the input video is estimated using depth in the scene extracted using a pre trained monocular depth ResNet model. Based on the amount of haze, an appropriate model is selected which is trained for specific haze conditions. The novelty of the proposed work is that the generator model is kept simple to get faster results in real-time. The discriminator is kept complex to make the generator more efficient. The traditional loss function is replaced with Visual Geometry Group (VGG) feature loss for better dehazing. The proposed model produced better results when compared to existing models. The Peak Signal to Noise Ratio (PSNR) obtained for most of the frames is above 32. The execution time is less than 60 milli seconds which makes the proposed model suited for video dehazing

    Artificial Intelligence in the Creative Industries: A Review

    Full text link
    This paper reviews the current state of the art in Artificial Intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically Machine Learning (ML) algorithms, is provided including Convolutional Neural Network (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement Learning (DRL). We categorise creative applications into five groups related to how AI technologies are used: i) content creation, ii) information analysis, iii) content enhancement and post production workflows, iv) information extraction and enhancement, and v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, machine learning-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of machine learning in domains with fewer constraints, where AI is the `creator', remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human centric -- where it is designed to augment, rather than replace, human creativity

    Computational Media Aesthetics for Media Synthesis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review

    Get PDF
    Sea-surface object detection is critical for navigation safety of autonomous ships. Electrooptical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object detection technologies have been gradually applied to sea-surface object detection. This article demonstrates a comprehensive overview of sea-surface object-detection approaches where the advantages and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of these approaches. The arti

    Visual Object Tracking Approach Based on Wavelet Transforms

    Get PDF
    In this Thesis, a new visual object tracking (VOT) approach is proposed to overcome the main challenging problem encountered within the existing approaches known as the significant appearance changes which is due mainly to the heavy occlusion and illumination variations. Indeed, the proposed approach is based on combining the deep convolutional neural networks (CNN), the histograms of oriented gradients (HOG) features, and the discrete wavelet packet transform to ensure the implementation of three ideas. Firstly, solving the problem of illumination variation by incorporating the coefficients of the image discrete wavelet packet transform instead of the image template to handle the case of images with high saturation in the input of the used CNN, whereas the inverse discrete wavelet packet transform is used at the output for extracting the CNN features. Secondly, by combining four learned correlation filters with convolutional features, the target location is deduced using multichannel correlation maps at the CNNs output. On the other side, the maximum value of the resulting maps from correlation filters with convolutional features produced by HOG feature of the image template previously obtained are calculated and which are used as an updating parameter of the correlation filters extracted from CNN and from HOG where the major aim is to ensure long-term memory of target appearance so that the target item may be recovered if tracking fails. Thirdly, to increase the performance of HOG, the coefficients of the discrete packet wavelet transform are employed instead of the image template. Finally, for the validation and the evaluation of the proposed tracking approach performance based on specific performance metrics in comparison to the state-of-the-art counterparts, extensive simulation experiments on benchmark datasets have been conducted out, such as OTB50, OTB100 , TC128 ,and UAV20. The obtained results clearly prove the validity of the proposed approach in solving the encountered problems of visual object tracking in almost the experiment cases presented in this thesis compared to other existing tracking approaches

    Text Similarity Between Concepts Extracted from Source Code and Documentation

    Get PDF
    Context: Constant evolution in software systems often results in its documentation losing sync with the content of the source code. The traceability research field has often helped in the past with the aim to recover links between code and documentation, when the two fell out of sync. Objective: The aim of this paper is to compare the concepts contained within the source code of a system with those extracted from its documentation, in order to detect how similar these two sets are. If vastly different, the difference between the two sets might indicate a considerable ageing of the documentation, and a need to update it. Methods: In this paper we reduce the source code of 50 software systems to a set of key terms, each containing the concepts of one of the systems sampled. At the same time, we reduce the documentation of each system to another set of key terms. We then use four different approaches for set comparison to detect how the sets are similar. Results: Using the well known Jaccard index as the benchmark for the comparisons, we have discovered that the cosine distance has excellent comparative powers, and depending on the pre-training of the machine learning model. In particular, the SpaCy and the FastText embeddings offer up to 80% and 90% similarity scores. Conclusion: For most of the sampled systems, the source code and the documentation tend to contain very similar concepts. Given the accuracy for one pre-trained model (e.g., FastText), it becomes also evident that a few systems show a measurable drift between the concepts contained in the documentation and in the source code.</p

    Novel deep learning architectures for marine and aquaculture applications

    Get PDF
    Alzayat Saleh's research was in the area of artificial intelligence and machine learning to autonomously recognise fish and their morphological features from digital images. Here he created new deep learning architectures that solved various computer vision problems specific to the marine and aquaculture context. He found that these techniques can facilitate aquaculture management and environmental protection. Fisheries and conservation agencies can use his results for better monitoring strategies and sustainable fishing practices
    corecore