1,478 research outputs found

    Efficient traceable oblivious transfer and its applications

    Get PDF
    Oblivious transfer (OT) has been applied widely in privacy-sensitive systems such as on-line transactions and electronic commerce to protect users\u27 private information. Traceability is an interesting feature of such systems that the privacy of the dishonest users could be traced by the service provider or a trusted third party (TTP). However, previous research on OT mainly focused on designing protocols with unconditional receiver\u27s privacy. Thus, traditional OT schemes cannot fulfill the traceability requirements in the aforementioned applications. In this paper, we address this problem by presenting a novel traceable oblivious transfer (TOT) without involvement of any TTP. In the new system, an honest receiver is able to make a fixed number of choices with perfect receiver privacy. If the receiver misbehaves and tries to request more than a pre-fixed number of choices, then all his previous choices could be traced by the sender. We first give the formal definition and security model of TOT, then propose an efficient TOT scheme, which is proven secure under the proposed security model

    A Scalable Architecture for Electronic Payments

    Full text link
    We present a scalable architecture for electronic retail payments via central bank digital currency and offer a solution to the perceived conflict between robust regulatory oversight and consumer affordances such as privacy and control. Our architecture combines existing work in payment systems and digital currency with a new approach to digital asset design for managing unforgeable, stateful, and oblivious assets without relying on either a central authority or a monolithic consensus system. Regulated financial institutions have a role in every transaction, and the consumer affordances are achieved through the use of non-custodial wallets that unlink the sender from the recipient in the transaction channel. This approach is fully compatible with the existing two-tiered banking system and can complement and extend the roles of existing money services businesses and asset custodians.Comment: 24 pages, 7 figures, 2 table

    Private set intersection: A systematic literature review

    Get PDF
    Secure Multi-party Computation (SMPC) is a family of protocols which allow some parties to compute a function on their private inputs, obtaining the output at the end and nothing more. In this work, we focus on a particular SMPC problem named Private Set Intersection (PSI). The challenge in PSI is how two or more parties can compute the intersection of their private input sets, while the elements that are not in the intersection remain private. This problem has attracted the attention of many researchers because of its wide variety of applications, contributing to the proliferation of many different approaches. Despite that, current PSI protocols still require heavy cryptographic assumptions that may be unrealistic in some scenarios. In this paper, we perform a Systematic Literature Review of PSI solutions, with the objective of analyzing the main scenarios where PSI has been studied and giving the reader a general taxonomy of the problem together with a general understanding of the most common tools used to solve it. We also analyze the performance using different metrics, trying to determine if PSI is mature enough to be used in realistic scenarios, identifying the pros and cons of each protocol and the remaining open problems.This work has been partially supported by the projects: BIGPrivDATA (UMA20-FEDERJA-082) from the FEDER Andalucía 2014– 2020 Program and SecTwin 5.0 funded by the Ministry of Science and Innovation, Spain, and the European Union (Next Generation EU) (TED2021-129830B-I00). The first author has been funded by the Spanish Ministry of Education under the National F.P.U. Program (FPU19/01118). Funding for open access charge: Universidad de Málaga/CBU

    Constant-size dynamic k-times anonymous authentication

    Get PDF
    Dynamic k-times anonymous authentication (k-TAA) schemes allow members of a group to be authenticated anonymously by application providers for a bounded number of times, where application providers can independently and dynamically grant or revoke access right to members in their own group. In this paper, we construct a dynamic k-TAA scheme with space and time complexities of O(log(k)) and a variant, in which the authentication protocol only requires constant time and space complexities at the cost of O(k) -sized public key. We also describe some tradeoff issues between different system characteristics. We detail all the zero-knowledge proof-of-knowledge protocols involved and show that our construction is secure in the random oracle model under the q-strong Diffie-Hellman assumption and q-decisional Diffie-Hellman inversion assumption. We provide a proof-of-concept implementation, experiment on its performance, and show that our scheme is practical

    White-box implementation to advantage DRM

    Get PDF
    Digital Rights Management (DRM) is a popular approach for secure content distribution. Typically, DRM encrypts the content before delivers it. Most DRM applications use secure algorithms to protect content. However, executing these algorithms in an insecure environment may allow adversaries to compromise the system and obtain the key. To withstand such attack, algorithm implementation is modified in such a way to make the implementation unintelligible, namely obfuscation approach. White-box cryptography (WBC) is an obfuscation technique intended to protect secret keys from being disclosed in a software implementation using a fully transparent methodology. This mechanism is appropriate for DRM applications and able to enhance security for the content provider. However, DRM is required to provide a balanced protection for the content provider and users. We construct a protocol on implementing WBC to improve DRM system. The system does not only provide security for the content provider but also preserves privacy for users
    • …
    corecore