59 research outputs found

    Efficient Three-stage Auction Schemes for Cloudlets Deployment in Wireless Access Network

    Full text link
    Cloudlet deployment and resource allocation for mobile users (MUs) have been extensively studied in existing works for computation resource scarcity. However, most of them failed to jointly consider the two techniques together, and the selfishness of cloudlet and access point (AP) are ignored. Inspired by the group-buying mechanism, this paper proposes three-stage auction schemes by combining cloudlet placement and resource assignment, to improve the social welfare subject to the economic properties. We first divide all MUs into some small groups according to the associated APs. Then the MUs in same group can trade with cloudlets in a group-buying way through the APs. Finally, the MUs pay for the cloudlets if they are the winners in the auction scheme. We prove that our auction schemes can work in polynomial time. We also provide the proofs for economic properties in theory. For the purpose of performance comparison, we compare the proposed schemes with HAF, which is a centralized cloudlet placement scheme without auction. Numerical results confirm the correctness and efficiency of the proposed schemes.Comment: 22 pages,12 figures, Accepted by Wireless Network

    Socially Trusted Collaborative Edge Computing in Ultra Dense Networks

    Full text link
    Small cell base stations (SBSs) endowed with cloud-like computing capabilities are considered as a key enabler of edge computing (EC), which provides ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. However, due to the limited computation resources of an individual SBS, providing computation services of high quality to its users faces significant challenges when it is overloaded with an excessive amount of computation workload. In this paper, we propose collaborative edge computing among SBSs by forming SBS coalitions to share computation resources with each other, thereby accommodating more computation workload in the edge system and reducing reliance on the remote cloud. A novel SBS coalition formation algorithm is developed based on the coalitional game theory to cope with various new challenges in small-cell-based edge systems, including the co-provisioning of radio access and computing services, cooperation incentives, and potential security risks. To address these challenges, the proposed method (1) allows collaboration at both the user-SBS association stage and the SBS peer offloading stage by exploiting the ultra dense deployment of SBSs, (2) develops a payment-based incentive mechanism that implements proportionally fair utility division to form stable SBS coalitions, and (3) builds a social trust network for managing security risks among SBSs due to collaboration. Systematic simulations in practical scenarios are carried out to evaluate the efficacy and performance of the proposed method, which shows that tremendous edge computing performance improvement can be achieved.Comment: arXiv admin note: text overlap with arXiv:1010.4501 by other author

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    FogSpot: Spot Pricing for Application Provisioning in Edge/Fog Computing

    Get PDF
    An increasing number of Low Latency Applications (LLAs) in the entertainment, IoT, and automotive domains require response times that challenge the traditional application provisioning using distant Data Centres. Fog computing paradigm extends cloud computing at the edge and middle-tier locations of the network, providing response times an order of magnitude smaller than those that can be achieved by the current "client-to-cloud" network model. Here, we address the challenges of provisioning heavily stateful LLA in the setting where fog infrastructure consists of third-party computing resources, i.e., cloudlets, that comes in the form of "data centres in the box". We introduce FogSpot, a charging mechanism for on-path, on-demand, application provisioning. In FogSpot, cloudlets offer their resources in the form of Virtual Machines (VMs) via markets, collocated with the cloudlets, that interact with forwarded users' application requests for VMs in real time. FogSpot associates each cloudlet with a spot price based on current application requests. The proposed mechanism's design takes into account the characteristics of cloudlets' resources, such as their limited elasticity, and LLAs' attributes, like the expected QoS gain and engagement duration. Lastly, FogSpot guarantees end users' requests truthfulness while focusing in maximising either each cloudlet's revenue or resource utilisation

    QoS-aware Cloud Infrastructure Provisioning in Heterogeneous Environments

    Get PDF
    Over the last decades Information Technology (IT) has become an enabler for nearly all businesses from industrial production to finance. The IT resources required for these business activities are usually provided by local and remote data centers. Although most resources are still hosted in companies’ proprietary data centers, cloud computing initiated a paradigm shift in IT service provisioning from owning to leasing resources and services. Today, over 50% of German companies use cloud services while shifting services into the cloud has become an emerging trend. Cloud computing, which is often referred to as the fifth utility in addition to water, electricity, gas, and telephony, provides commoditized computation resources that are available any time on demand in the required quantity. However, in contrast to other commodities, a single quality level is insufficient for IT service provisioning. Instead, the required quality for a provided IT service depends on the various functional and non-functional requirements. For example, highly interactive applications such as cloud gaming require a high quality level in terms of latency. Providers of cloud services have to face a highly competitive market. Cost advantages in cloud computing are primarily achieved by utilizing large centralized data centers at low-cost locations. However, this kind of resource provisioning impacts the quality of service of different types of services such as the aforementioned interactive multimedia services that possess strict quality of service constraints. Hence, infrastructure providers have to face a trade-off between cost reduction and adherence to the required Quality of Service (QoS) attributes. Apart from how services are provisioned, the way of consuming IT services also changed substantially over the last years. Mobile devices have begun to replace locally installed desktop computers at an accelerated pace. By utilizing these mobile devices, service providers are confronted with two major challenges: (i) a cellular network connection, which potentially causes a higher and more fluctuating latency and (ii) severely limited resources compared to local Personal Computers (PCs). These two aspects restrict the utilization of multimedia services, e. g., cloud gaming. To address these challenges, we present two novel approaches for (i) resource planning on a global level for multiple services with heterogeneous QoS characteristics and (ii) the augmentation of the centralized cloud infrastructure with locally installed resources to provide viable multimedia services to mobile devices. As the first major contribution, we introduce the Cloud Data Center Selection Problem (CDCSP). This problem describes the data center placement and resource selection on a global scale. We consider the role of a cloud provider, who aims to dimension resources in a cost-minimal fashion under the consideration of multiple services with different QoS attributes. Based on a mathematical optimization model, we propose the exact solution approach CDCSP-EXA.KOM. Due to the high complexity and the resulting computational effort to find the optimal solution, we propose and analyze four heuristic approaches to identify the most appropriate one for the given problem. As a first heuristic, we propose an approach based on linear program relaxation, CDCSP-REL.KOM. Furthermore, to take the specific structure of the problem into consideration, we develop the custom tailored CDCSP-PBST.KOM approach, which is based on a prioritized processing of demands and supplies. To further improve the results, we combine multiple heuristics to a Best-of-Breed approach, named CDCSP-BoB. KOM. Finally, as a metaheuristic improvement procedure, we propose the tabu search approach CDCSP-TS.KOM. To assess the practical applicability and performance of these optimization approaches, we analyze them in detail and compare their performance in a quantitatively. The second major contribution of this work addresses the augmentation of the centralized cloud infrastructure with local resources to provide services to mobile devices. Therefore, we formulate the Dynamic Cloudlet Placement and Selection Problem (DCPSP), as a multi-period resource planning problem, which includes local characteristics, such as space for hosting resources and available network bandwidth. We focus on a cloud provider who aims to augment the centralized infrastructure using local resources to improve the QoS guarantees for mobile used applications. We formalize the problem as a mathematical optimization model and derive the exact solution approach DCPSP-EXA.KOM. Due to the high complexity that is caused by an optimization over many time slots, we propose the heuristic optimization approach DCPSP-HEU.KOM. We assess the performance of these two approaches by the means of quantitative evaluation. In summary, the contributions of this thesis provide the means for a cost-efficient and QoS-aware resource selection in cloud infrastructures. We contribute the formalization of the problems and algorithms to support the efficient planning of future cloud infrastructures in environments with a multitude of heterogeneous services on a global scale. Furthermore, to enable mobile users to consume multimedia cloud services, we propose an optimization model and algorithms to augment a global centralized infrastructure by local resource units
    corecore