184 research outputs found

    Seabed fluid flow-related processes: evidence and quantification based on high-resolution imaging techniques and GIS analyses

    Get PDF
    This work provides new insights on different aspects of seabed fluid flow processes based on seafloor observations. The methods used entirely rely on ROV-based high-resolution imaging and mapping techniques. Optical data are used to produce visual maps of the seafloor, in the form of geo-referenced video- and photo-mosaics, whereas acoustic techniques allow mapping the micro-bathymetry of the seabed, as well as the signal reflectivity of the sediment surface and of the water column. This work presents three case studies, about two sites of seabed fluid flow: the Menez Gwen hydrothermal vent on the MAR and the REGAB pockmark in the Lower Congo Basin. On the technical side, some of the high-resolution techniques used in this thesis are not commonly used by the marine scientific community. This is particularly the case for large-area photo-mosaics. Although the interest in mosaicking is growing, there are still no tools freely and readily available to scientists to routinely construct large-area photo-mosaics. Therefore, this work presents a MATLAB toolbox for large-area photo-mosaicking (LAPM toolbox), which was developed as part of this thesis

    Adaptive sampling of transient environmental phenomena with autonomous mobile platforms

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.In the environmental and earth sciences, hypotheses about transient phenomena have been universally investigated by collecting physical sample materials and performing ex situ analysis. Although the gold standard, logistical challenges limit the overall efficacy: the number of samples are limited to what can be stored and transported, human experts must be able to safely access or directly observe the target site, and time in the field and subsequently the laboratory, increases overall campaign expense. As a result, the temporal detail and spatial diversity in the samples may fail to capture insightful structure of the phenomenon of interest. The development of in situ instrumentation allows for near real-time analysis of physical phenomenon through observational strategies (e.g., optical), and in combination with unmanned mobile platforms, has considerably impacted field operations in the sciences. In practice, mobile platforms are either remotely operated or perform guided, supervised autonomous missions specified as navigation between humanselected waypoints. Missions like these are useful for gaining insight about a particular target site, but can be sample-sparse in scientifically valuable regions, particularly in complex or transient distributions. A skilled human expert and pilot can dynamically adjust mission trajectories based on sensor information. Encoding their insight onto a vehicle to enable adaptive sampling behaviors can broadly increase the utility of mobile platforms in the sciences. This thesis presents three field campaigns conducted with a human-piloted marine surface vehicle, the ChemYak, to study the greenhouse gases methane (CH4) and carbon dioxide (CO2) in estuaries, rivers, and the open ocean. These studies illustrate the utility of mobile surface platforms for environmental research, and highlight key challenges of studying transient phenomenon. This thesis then formalizes the maximum seek-and-sample (MSS) adaptive sampling problem, which requires a mobile vehicle to efficiently find and densely sample from the most scientifically valuable region in an a priori unknown, dynamic environment. The PLUMES algorithm — Plume Localization under Uncertainty using Maximum-ValuE information and Search—is subsequently presented, which addresses the MSS problem and overcomes key technical challenges with planning in natural environments. Theoretical performance guarantees are derived for PLUMES, and empirical performance is demonstrated against canonical uniform search and state-of-the-art baselines in simulation and field trials. Ultimately, this thesis examines the challenges of autonomous informative sampling in the environmental and earth sciences. In order to create useful systems that perform diverse scientific objectives in natural environments, approaches from robotics planning, field design, Bayesian optimization, machine learning, and the sciences must be drawn together. PLUMES captures the breadth and depth required to solve a specific objective within adaptive sampling, and this work as a whole highlights the potential for mobile technologies to perform intelligent autonomous science in the future

    Understanding fish movements and connectivity across temperate seascapes: Implications for marine conservation

    Get PDF
    Developing an ecological understanding on the linkages between patch types in coastal seascapes is a key goal in seascape ecology. Many reef-associated fish worldwide have complex life-histories, using vegetated nursery habitats as juveniles before undergoing ontogenetic habitat shifts to reefs. Currently, there is limited quantitative information on the spatiotemporal scales that fish connect patch types through ontogeny, particularly in temperate seascapes. Better quantifying this connectivity is essential to improving our understanding on the processes structuring fish populations, identifying critical habitats, and designing management strategies. In this thesis, I investigate the movement of reef-associated fish at both juvenile and adult life-stages to better quantify seascape connectivity and its importance for marine management and conservation

    The functioning of future coral reefs: fishes, sediments and productivity

    Get PDF
    Sterling Tebbett explored the capacity of future coral reefs to sustain critical ecosystem functions. His research suggests that many future reefs will be typified by algal turfs, and that interactions between sediments, fishes and productivity on such reefs are important. Managing these interactions may help sustain the functioning of reefs
    • …
    corecore