4,233 research outputs found

    Loop Coalescing and Scheduling for Barrier MIMD Architectures

    Get PDF
    Barrier MIMDs are asynchronous Multiple Instruction stream Multiple Data stream architectures capable of parallel execution of variable execution time instructions and arbitrary control flow (e.g., while loops and calls); however, they differ from conventional MlMDs in that the need for run-time synchronization is significantly reduced. This work considers the problem of scheduling nested loop structures on a barrier MIMD. The basic approach employs loop coalescing, a technique for transforming a multiply-nested loop into a single loop. Loop coalescing is extended to nested triangular loops, in which inner loop bounds are functions of outer loop indices. Also, a more efficient scheme to generate the original loop indices from the coalesced index is proposed for the case of constant loop bounds. These results are general, and can be applied to extend previous work using loop coalescing techniques. We concentrate on using loop coalescing for scheduling barrier MIMDs, and show how previous work in loop transformations [Wol89], [Pol88] and linear scheduling theory [ShF88], rShO901 cart be applied to this problem

    Dynamic Control Flow in Large-Scale Machine Learning

    Full text link
    Many recent machine learning models rely on fine-grained dynamic control flow for training and inference. In particular, models based on recurrent neural networks and on reinforcement learning depend on recurrence relations, data-dependent conditional execution, and other features that call for dynamic control flow. These applications benefit from the ability to make rapid control-flow decisions across a set of computing devices in a distributed system. For performance, scalability, and expressiveness, a machine learning system must support dynamic control flow in distributed and heterogeneous environments. This paper presents a programming model for distributed machine learning that supports dynamic control flow. We describe the design of the programming model, and its implementation in TensorFlow, a distributed machine learning system. Our approach extends the use of dataflow graphs to represent machine learning models, offering several distinctive features. First, the branches of conditionals and bodies of loops can be partitioned across many machines to run on a set of heterogeneous devices, including CPUs, GPUs, and custom ASICs. Second, programs written in our model support automatic differentiation and distributed gradient computations, which are necessary for training machine learning models that use control flow. Third, our choice of non-strict semantics enables multiple loop iterations to execute in parallel across machines, and to overlap compute and I/O operations. We have done our work in the context of TensorFlow, and it has been used extensively in research and production. We evaluate it using several real-world applications, and demonstrate its performance and scalability.Comment: Appeared in EuroSys 2018. 14 pages, 16 figure

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models

    Hierarchical Dynamic Loop Self-Scheduling on Distributed-Memory Systems Using an MPI+MPI Approach

    Full text link
    Computationally-intensive loops are the primary source of parallelism in scientific applications. Such loops are often irregular and a balanced execution of their loop iterations is critical for achieving high performance. However, several factors may lead to an imbalanced load execution, such as problem characteristics, algorithmic, and systemic variations. Dynamic loop self-scheduling (DLS) techniques are devised to mitigate these factors, and consequently, improve application performance. On distributed-memory systems, DLS techniques can be implemented using a hierarchical master-worker execution model and are, therefore, called hierarchical DLS techniques. These techniques self-schedule loop iterations at two levels of hardware parallelism: across and within compute nodes. Hybrid programming approaches that combine the message passing interface (MPI) with open multi-processing (OpenMP) dominate the implementation of hierarchical DLS techniques. The MPI-3 standard includes the feature of sharing memory regions among MPI processes. This feature introduced the MPI+MPI approach that simplifies the implementation of parallel scientific applications. The present work designs and implements hierarchical DLS techniques by exploiting the MPI+MPI approach. Four well-known DLS techniques are considered in the evaluation proposed herein. The results indicate certain performance advantages of the proposed approach compared to the hybrid MPI+OpenMP approach

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time

    Doctor of Philosophy

    Get PDF
    dissertationHigh Performance Computing (HPC) on-node parallelism is of extreme importance to guarantee and maintain scalability across large clusters of hundreds of thousands of multicore nodes. HPC programming is dominated by the hybrid model "MPI + X", with MPI to exploit the parallelism across the nodes, and "X" as some shared memory parallel programming model to accomplish multicore parallelism across CPUs or GPUs. OpenMP has become the "X" standard de-facto in HPC to exploit the multicore architectures of modern CPUs. Data races are one of the most common and insidious of concurrent errors in shared memory programming models and OpenMP programs are not immune to them. The OpenMP-provided ease of use to parallelizing programs can often make it error-prone to data races which become hard to find in large applications with thousands lines of code. Unfortunately, prior tools are unable to impact practice owing to their poor coverage or poor scalability. In this work, we develop several new approaches for low overhead data race detection. Our approaches aim to guarantee high precision and accuracy of race checking while maintaining a low runtime and memory overhead. We present two race checkers for C/C++ OpenMP programs that target two different classes of programs. The first, ARCHER, is fast but requires large amount of memory, so it ideally targets applications that require only a small portion of the available on-node memory. On the other hand, SWORD strikes a balance between fast zero memory overhead data collection followed by offline analysis that can take a long time, but it often report most races quickly. Given that race checking was impossible for large OpenMP applications, our contributions are the best available advances in what is known to be a difficult NP-complete problem. We performed an extensive evaluation of the tools on existing OpenMP programs and HPC benchmarks. Results show that both tools guarantee to identify all the races of a program in a given run without reporting any false alarms. The tools are user-friendly, hence serve as an important instrument for the daily work of programmers to help them identify data races early during development and production testing. Furthermore, our demonstrated success on real-world applications puts these tools on the top list of debugging tools for scientists at large

    pocl: A Performance-Portable OpenCL Implementation

    Get PDF
    OpenCL is a standard for parallel programming of heterogeneous systems. The benefits of a common programming standard are clear; multiple vendors can provide support for application descriptions written according to the standard, thus reducing the program porting effort. While the standard brings the obvious benefits of platform portability, the performance portability aspects are largely left to the programmer. The situation is made worse due to multiple proprietary vendor implementations with different characteristics, and, thus, required optimization strategies. In this paper, we propose an OpenCL implementation that is both portable and performance portable. At its core is a kernel compiler that can be used to exploit the data parallelism of OpenCL programs on multiple platforms with different parallel hardware styles. The kernel compiler is modularized to perform target-independent parallel region formation separately from the target-specific parallel mapping of the regions to enable support for various styles of fine-grained parallel resources such as subword SIMD extensions, SIMD datapaths and static multi-issue. Unlike previous similar techniques that work on the source level, the parallel region formation retains the information of the data parallelism using the LLVM IR and its metadata infrastructure. This data can be exploited by the later generic compiler passes for efficient parallelization. The proposed open source implementation of OpenCL is also platform portable, enabling OpenCL on a wide range of architectures, both already commercialized and on those that are still under research. The paper describes how the portability of the implementation is achieved. Our results show that most of the benchmarked applications when compiled using pocl were faster or close to as fast as the best proprietary OpenCL implementation for the platform at hand.Comment: This article was published in 2015; it is now openly accessible via arxi

    TaskPoint: sampled simulation of task-based programs

    Get PDF
    Sampled simulation is a mature technique for reducing simulation time of single-threaded programs, but it is not directly applicable to simulation of multi-threaded architectures. Recent multi-threaded sampling techniques assume that the workload assigned to each thread does not change across multiple executions of a program. This assumption does not hold for dynamically scheduled task-based programming models. Task-based programming models allow the programmer to specify program segments as tasks which are instantiated many times and scheduled dynamically to available threads. Due to system noise and variation in scheduling decisions, two consecutive executions on the same machine typically result in different instruction streams processed by each thread. In this paper, we propose TaskPoint, a sampled simulation technique for dynamically scheduled task-based programs. We leverage task instances as sampling units and simulate only a fraction of all task instances in detail. Between detailed simulation intervals we employ a novel fast-forward mechanism for dynamically scheduled programs. We evaluate the proposed technique on a set of 19 task-based parallel benchmarks and two different architectures. Compared to detailed simulation, TaskPoint accelerates architectural simulation with 64 simulated threads by an average factor of 19.1 at an average error of 1.8% and a maximum error of 15.0%.This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), the RoMoL ERC Advanced Grant (GA 321253), the European HiPEAC Network of Excellence and the Mont-Blanc project (EU-FP7-610402 and EU-H2020-671697). M. Moreto has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship JCI-2012-15047. M. Casas is supported by the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the EUFP7 (contract 2013BP B 00243). T.Grass has been partially supported by the AGAUR of the Generalitat de Catalunya (grant 2013FI B 0058).Peer ReviewedPostprint (author's final draft
    corecore