175 research outputs found

    A comprehensive review of RFID and bluetooth security: practical analysis

    Get PDF
    The Internet of Things (IoT) provides the ability to digitize physical objects into virtual data, thanks to the integration of hardware (e.g., sensors, actuators) and network communications for collecting and exchanging data. In this digitization process, however, security challenges need to be taken into account in order to prevent information availability, integrity, and confidentiality from being compromised. In this paper, security challenges of two broadly used technologies, RFID (Radio Frequency Identification) and Bluetooth, are analyzed. First, a review of the main vulnerabilities, security risk, and threats affecting both technologies are carried out. Then, open hardware and open source tools like: Proxmark3 and Ubertooth as well as BtleJuice and Bleah are used as part of the practical analysis. Lastly, risk mitigation and counter measures are proposed

    Radio Frequency Identification (RFID) Technology: Gaining A Competitive Value Through Cloud Computing

    Get PDF
    Radio Frequency Identification (RFID) uses radio waves to track the movement of goods through the Supply Chain system. The identity of an object is captured with a unique serial number that is transmitted wirelessly to a computer system. Small businesses are facing RFID implementation barriers.  The barriers range from the perspective of the consumer-goods manufacturers and retail organizations.  We propose implementing RFID technology using cloud computing framework to alleviate or reduce the implementation cost which is the most prevalent barrier.

    An Implementing A Continuous Authentication Protocol To Improve Robustness Security Threats On IoT Using ESP8266

    Get PDF
    The Internet of Things (IoT) is a network of physical things that are outfitted with sensors, software, and other technologies that are able to communicate and exchange data with other devices and systems over the Internet. Because of the diversity of their surroundings, IoT systems are sensitive to network attacks. The IoT could be the source of these dangers and attacks. There are a lot of devices that communicate with each other via the IoT, and one of the most critical components of this is to maintain IoT security. IoT devices are a prime target for attackers and pose a serious risk of impersonation during a call. Proposals to prevent session hijacking in device-to-device communication are made in this research study. User-to-device authentication relies on usernames and passwords, but continuous authentication doesn't. This protocol relies on device features and contextual information. Moreover, this protocol reduces the synchronization losses using shadow IDs and emergency key. In addition, the protocol’s robustness will be tested by providing security and performance analysis

    Privacy Preservation and Mutual Authentication in RFID Systems

    Get PDF
    Identification and tracking of devices and objects has always been helpful in many fields like transportation, tele-medicine, business and supply chain etc. Radio Frequency Identification (RFID) tags are petite, wireless devices attached to objects for the purpose of identification and information exchange. RFID systems is composed of tags, readers and an application system. These tags can be identified by a reader and are useful for tracking and monitoring. RFID tags uses Radio Frequency (RF) for wireless communication which renders these tags vulnerable to wireless security attacks. Implementation of RFID systems faces huge challenges regarding privacy as these tags can be uniquely identified and thereby are subject to tracking by an adversary. In this project a new privacy and mutual authentication scheme has been discussed that uses cryptographic algorithms and can be used in RFID systems to overcome the issues with privacy

    RFID: Prospects for Europe: Item-level Tagging and Public Transportation

    Get PDF
    This report, which is part of the COMPLETE series of studies, investigates the current and future competitiveness of the European industry in RFID applications in general and in two specific cases: item-level tagging and public transportation. It analyses its constituent technologies, drivers and barriers to growth, actual and potential markets and economic impacts, the industrial position and innovative capabilities, and it concludes with policy implicationsJRC.DDG.J.4-Information Societ

    A Computational Architecture Based on RFID Sensors for Traceability in Smart Cities

    Get PDF
    Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal
    corecore