27,749 research outputs found

    Efficient Support for P-HTTP in Cluster-based Web Servers

    Get PDF
    This paper studies mechanisms and policies for supporting HTTP/1.1 persistent connections in cluster-based Web servers that employ content-based request distribution. We present two mechanisms for the efficient, content-based distribution of HTTP/1.1 requests among the back-end nodes of a cluster server. A trace-driven simulation shows that these mechanisms, combined with an extension of the locality-aware request distribution (LARD) policy are effective in yielding scalable performance for HTTP/1.1 requests. We implemented the simpler of these two mechanisms, back-end forwarding. Measurements of this mechanism in connection with extended LARD on a prototype cluster, driven with traces from actual Web servers, confirm the simulation results. The throughput of the prototype is up to four times better than that achieved by conventional weighted round-robin request distribution. In addition, throughput with persistent connections is up to 26% better than without

    A horizontally-scalable multiprocessing platform based on Node.js

    Full text link
    This paper presents a scalable web-based platform called Node Scala which allows to split and handle requests on a parallel distributed system according to pre-defined use cases. We applied this platform to a client application that visualizes climate data stored in a NoSQL database MongoDB. The design of Node Scala leads to efficient usage of available computing resources in addition to allowing the system to scale simply by adding new workers. Performance evaluation of Node Scala demonstrated a gain of up to 74 % compared to the state-of-the-art techniques.Comment: 8 pages, 7 figures. Accepted for publication as a conference paper for the 13th IEEE International Symposium on Parallel and Distributed Processing with Applications (IEEE ISPA-15

    Internet of Things Cloud: Architecture and Implementation

    Full text link
    The Internet of Things (IoT), which enables common objects to be intelligent and interactive, is considered the next evolution of the Internet. Its pervasiveness and abilities to collect and analyze data which can be converted into information have motivated a plethora of IoT applications. For the successful deployment and management of these applications, cloud computing techniques are indispensable since they provide high computational capabilities as well as large storage capacity. This paper aims at providing insights about the architecture, implementation and performance of the IoT cloud. Several potential application scenarios of IoT cloud are studied, and an architecture is discussed regarding the functionality of each component. Moreover, the implementation details of the IoT cloud are presented along with the services that it offers. The main contributions of this paper lie in the combination of the Hypertext Transfer Protocol (HTTP) and Message Queuing Telemetry Transport (MQTT) servers to offer IoT services in the architecture of the IoT cloud with various techniques to guarantee high performance. Finally, experimental results are given in order to demonstrate the service capabilities of the IoT cloud under certain conditions.Comment: 19pages, 4figures, IEEE Communications Magazin

    Design Architecture-Based on Web Server and Application Cluster in Cloud Environment

    Full text link
    Cloud has been a computational and storage solution for many data centric organizations. The problem today those organizations are facing from the cloud is in data searching in an efficient manner. A framework is required to distribute the work of searching and fetching from thousands of computers. The data in HDFS is scattered and needs lots of time to retrieve. The major idea is to design a web server in the map phase using the jetty web server which will give a fast and efficient way of searching data in MapReduce paradigm. For real time processing on Hadoop, a searchable mechanism is implemented in HDFS by creating a multilevel index in web server with multi-level index keys. The web server uses to handle traffic throughput. By web clustering technology we can improve the application performance. To keep the work down, the load balancer should automatically be able to distribute load to the newly added nodes in the server

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    The Glasgow raspberry pi cloud: a scale model for cloud computing infrastructures

    Get PDF
    Data Centers (DC) used to support Cloud services often consist of tens of thousands of networked machines under a single roof. The significant capital outlay required to replicate such infrastructures constitutes a major obstacle to practical implementation and evaluation of research in this domain. Currently, most research into Cloud computing relies on either limited software simulation, or the use of a testbed environments with a handful of machines. The recent introduction of the Raspberry Pi, a low-cost, low-power single-board computer, has made the construction of a miniature Cloud DCs more affordable. In this paper, we present the Glasgow Raspberry Pi Cloud (PiCloud), a scale model of a DC composed of clusters of Raspberry Pi devices. The PiCloud emulates every layer of a Cloud stack, ranging from resource virtualisation to network behaviour, providing a full-featured Cloud Computing research and educational environment

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore