887 research outputs found

    Efficient Super Resolution For Large-Scale Images Using Attentional GAN

    Full text link
    Single Image Super Resolution (SISR) is a well-researched problem with broad commercial relevance. However, most of the SISR literature focuses on small-size images under 500px, whereas business needs can mandate the generation of very high resolution images. At Expedia Group, we were tasked with generating images of at least 2000px for display on the website, four times greater than the sizes typically reported in the literature. This requirement poses a challenge that state-of-the-art models, validated on small images, have not been proven to handle. In this paper, we investigate solutions to the problem of generating high-quality images for large-scale super resolution in a commercial setting. We find that training a generative adversarial network (GAN) with attention from scratch using a large-scale lodging image data set generates images with high PSNR and SSIM scores. We describe a novel attentional SISR model for large-scale images, A-SRGAN, that uses a Flexible Self Attention layer to enable processing of large-scale images. We also describe a distributed algorithm which speeds up training by around a factor of five.Comment: Accepted by IEEE International Conference on Big Data, 201

    Face Hallucination by Attentive Sequence Optimization with Reinforcement Learning

    Full text link
    Face hallucination is a domain-specific super-resolution problem that aims to generate a high-resolution (HR) face image from a low-resolution~(LR) input. In contrast to the existing patch-wise super-resolution models that divide a face image into regular patches and independently apply LR to HR mapping to each patch, we implement deep reinforcement learning and develop a novel attention-aware face hallucination (Attention-FH) framework, which recurrently learns to attend a sequence of patches and performs facial part enhancement by fully exploiting the global interdependency of the image. Specifically, our proposed framework incorporates two components: a recurrent policy network for dynamically specifying a new attended region at each time step based on the status of the super-resolved image and the past attended region sequence, and a local enhancement network for selected patch hallucination and global state updating. The Attention-FH model jointly learns the recurrent policy network and local enhancement network through maximizing a long-term reward that reflects the hallucination result with respect to the whole HR image. Extensive experiments demonstrate that our Attention-FH significantly outperforms the state-of-the-art methods on in-the-wild face images with large pose and illumination variations.Comment: To be published in TPAM

    TGAN: Deep Tensor Generative Adversarial Nets for Large Image Generation

    Full text link
    Deep generative models have been successfully applied to many applications. However, existing works experience limitations when generating large images (the literature usually generates small images, e.g. 32 * 32 or 128 * 128). In this paper, we propose a novel scheme, called deep tensor adversarial generative nets (TGAN), that generates large high-quality images by exploring tensor structures. Essentially, the adversarial process of TGAN takes place in a tensor space. First, we impose tensor structures for concise image representation, which is superior in capturing the pixel proximity information and the spatial patterns of elementary objects in images, over the vectorization preprocess in existing works. Secondly, we propose TGAN that integrates deep convolutional generative adversarial networks and tensor super-resolution in a cascading manner, to generate high-quality images from random distributions. More specifically, we design a tensor super-resolution process that consists of tensor dictionary learning and tensor coefficients learning. Finally, on three datasets, the proposed TGAN generates images with more realistic textures, compared with state-of-the-art adversarial autoencoders. The size of the generated images is increased by over 8.5 times, namely 374 * 374 in PASCAL2

    Progressive Pose Attention Transfer for Person Image Generation

    Full text link
    This paper proposes a new generative adversarial network for pose transfer, i.e., transferring the pose of a given person to a target pose. The generator of the network comprises a sequence of Pose-Attentional Transfer Blocks that each transfers certain regions it attends to, generating the person image progressively. Compared with those in previous works, our generated person images possess better appearance consistency and shape consistency with the input images, thus significantly more realistic-looking. The efficacy and efficiency of the proposed network are validated both qualitatively and quantitatively on Market-1501 and DeepFashion. Furthermore, the proposed architecture can generate training images for person re-identification, alleviating data insufficiency. Codes and models are available at: https://github.com/tengteng95/Pose-Transfer.git.Comment: To appear in CVPR 2019, oral presentation (21 pages, 15 figures including the supplementary materials

    Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

    Full text link
    In this paper we introduce a generative parametric model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid, a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach (Goodfellow et al.). Samples drawn from our model are of significantly higher quality than alternate approaches. In a quantitative assessment by human evaluators, our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for samples drawn from a GAN baseline model. We also show samples from models trained on the higher resolution images of the LSUN scene dataset

    Difficulty-aware Image Super Resolution via Deep Adaptive Dual-Network

    Full text link
    Recently, deep learning based single image super-resolution(SR) approaches have achieved great development. The state-of-the-art SR methods usually adopt a feed-forward pipeline to establish a non-linear mapping between low-res(LR) and high-res(HR) images. However, due to treating all image regions equally without considering the difficulty diversity, these approaches meet an upper bound for optimization. To address this issue, we propose a novel SR approach that discriminately processes each image region within an image by its difficulty. Specifically, we propose a dual-way SR network that one way is trained to focus on easy image regions and another is trained to handle hard image regions. To identify whether a region is easy or hard, we propose a novel image difficulty recognition network based on PSNR prior. Our SR approach that uses the region mask to adaptively enforce the dual-way SR network yields superior results. Extensive experiments on several standard benchmarks (e.g., Set5, Set14, BSD100, and Urban100) show that our approach achieves state-of-the-art performance.Comment: ICME2019(Oral), code and results are available at: https://github.com/xzwlx/Difficulty-S

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems

    Learning to Globally Edit Images with Textual Description

    Full text link
    We show how we can globally edit images using textual instructions: given a source image and a textual instruction for the edit, generate a new image transformed under this instruction. To tackle this novel problem, we develop three different trainable models based on RNN and Generative Adversarial Network (GAN). The models (bucket, filter bank, and end-to-end) differ in how much expert knowledge is encoded, with the most general version being purely end-to-end. To train these systems, we use Amazon Mechanical Turk to collect textual descriptions for around 2000 image pairs sampled from several datasets. Experimental results evaluated on our dataset validate our approaches. In addition, given that the filter bank model is a good compromise between generality and performance, we investigate it further by replacing RNN with Graph RNN, and show that Graph RNN improves performance. To the best of our knowledge, this is the first computational photography work on global image editing that is purely based on free-form textual instructions

    Efficient Neural Architecture for Text-to-Image Synthesis

    Full text link
    Text-to-image synthesis is the task of generating images from text descriptions. Image generation, by itself, is a challenging task. When we combine image generation and text, we bring complexity to a new level: we need to combine data from two different modalities. Most of recent works in text-to-image synthesis follow a similar approach when it comes to neural architectures. Due to aforementioned difficulties, plus the inherent difficulty of training GANs at high resolutions, most methods have adopted a multi-stage training strategy. In this paper we shift the architectural paradigm currently used in text-to-image methods and show that an effective neural architecture can achieve state-of-the-art performance using a single stage training with a single generator and a single discriminator. We do so by applying deep residual networks along with a novel sentence interpolation strategy that enables learning a smooth conditional space. Finally, our work points a new direction for text-to-image research, which has not experimented with novel neural architectures recently

    Generative Adversarial Network in Medical Imaging: A Review

    Full text link
    Generative adversarial networks have gained a lot of attention in the computer vision community due to their capability of data generation without explicitly modelling the probability density function. The adversarial loss brought by the discriminator provides a clever way of incorporating unlabeled samples into training and imposing higher order consistency. This has proven to be useful in many cases, such as domain adaptation, data augmentation, and image-to-image translation. These properties have attracted researchers in the medical imaging community, and we have seen rapid adoption in many traditional and novel applications, such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. Based on our observations, this trend will continue and we therefore conducted a review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.Comment: 24 pages; v4; added missing references from before Jan 1st 2019; accepted to MedI
    corecore