31,744 research outputs found

    A Cost-effective Shuffling Method against DDoS Attacks using Moving Target Defense

    Full text link
    Moving Target Defense (MTD) has emerged as a newcomer into the asymmetric field of attack and defense, and shuffling-based MTD has been regarded as one of the most effective ways to mitigate DDoS attacks. However, previous work does not acknowledge that frequent shuffles would significantly intensify the overhead. MTD requires a quantitative measure to compare the cost and effectiveness of available adaptations and explore the best trade-off between them. In this paper, therefore, we propose a new cost-effective shuffling method against DDoS attacks using MTD. By exploiting Multi-Objective Markov Decision Processes to model the interaction between the attacker and the defender, and designing a cost-effective shuffling algorithm, we study the best trade-off between the effectiveness and cost of shuffling in a given shuffling scenario. Finally, simulation and experimentation on an experimental software defined network (SDN) indicate that our approach imposes an acceptable shuffling overload and is effective in mitigating DDoS attacks

    MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense

    Full text link
    Present attack methods can make state-of-the-art classification systems based on deep neural networks misclassify every adversarially modified test example. The design of general defense strategies against a wide range of such attacks still remains a challenging problem. In this paper, we draw inspiration from the fields of cybersecurity and multi-agent systems and propose to leverage the concept of Moving Target Defense (MTD) in designing a meta-defense for 'boosting' the robustness of an ensemble of deep neural networks (DNNs) for visual classification tasks against such adversarial attacks. To classify an input image, a trained network is picked randomly from this set of networks by formulating the interaction between a Defender (who hosts the classification networks) and their (Legitimate and Malicious) users as a Bayesian Stackelberg Game (BSG). We empirically show that this approach, MTDeep, reduces misclassification on perturbed images in various datasets such as MNIST, FashionMNIST, and ImageNet while maintaining high classification accuracy on legitimate test images. We then demonstrate that our framework, being the first meta-defense technique, can be used in conjunction with any existing defense mechanism to provide more resilience against adversarial attacks that can be afforded by these defense mechanisms. Lastly, to quantify the increase in robustness of an ensemble-based classification system when we use MTDeep, we analyze the properties of a set of DNNs and introduce the concept of differential immunity that formalizes the notion of attack transferability.Comment: Accepted to the Conference on Decision and Game Theory for Security (GameSec), 201

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore