10,330 research outputs found

    A novel user-centered design for personalized video summarization

    Get PDF
    In the past, several automatic video summarization systems had been proposed to generate video summary. However, a generic video summary that is generated based only on audio, visual and textual saliencies will not satisfy every user. This paper proposes a novel system for generating semantically meaningful personalized video summaries, which are tailored to the individual user's preferences over video semantics. Each video shot is represented using a semantic multinomial which is a vector of posterior semantic concept probabilities. The proposed system stitches video summary based on summary time span and top-ranked shots that are semantically relevant to the user's preferences. The proposed summarization system is evaluated using both quantitative and subjective evaluation metrics. The experimental results on the performance of the proposed video summarization system are encouraging

    Coherent segmentation of video into syntactic regions

    Get PDF
    In this paper we report on our work in realising an approach to video shot matching which involves automatically segmenting video into abstract intertwinded shapes in such a way that there is temporal coherency. These shapes representing approximations of objects and background regions can then be matched giving fine-grained shot-shot matching. The main contributions of the paper are firstly the extension of our segmentation algorithm for still images to spatial segmentation in video, and secondly the introduction a measurement of temporal coherency of the spatial segmentation. This latter allows us to quantitatively demonstrate the effectiveness of our approach on real video data

    Learning Segment Similarity and Alignment in Large-Scale Content Based Video Retrieval

    Full text link
    With the explosive growth of web videos in recent years, large-scale Content-Based Video Retrieval (CBVR) becomes increasingly essential in video filtering, recommendation, and copyright protection. Segment-level CBVR (S-CBVR) locates the start and end time of similar segments in finer granularity, which is beneficial for user browsing efficiency and infringement detection especially in long video scenarios. The challenge of S-CBVR task is how to achieve high temporal alignment accuracy with efficient computation and low storage consumption. In this paper, we propose a Segment Similarity and Alignment Network (SSAN) in dealing with the challenge which is firstly trained end-to-end in S-CBVR. SSAN is based on two newly proposed modules in video retrieval: (1) An efficient Self-supervised Keyframe Extraction (SKE) module to reduce redundant frame features, (2) A robust Similarity Pattern Detection (SPD) module for temporal alignment. In comparison with uniform frame extraction, SKE not only saves feature storage and search time, but also introduces comparable accuracy and limited extra computation time. In terms of temporal alignment, SPD localizes similar segments with higher accuracy and efficiency than existing deep learning methods. Furthermore, we jointly train SSAN with SKE and SPD and achieve an end-to-end improvement. Meanwhile, the two key modules SKE and SPD can also be effectively inserted into other video retrieval pipelines and gain considerable performance improvements. Experimental results on public datasets show that SSAN can obtain higher alignment accuracy while saving storage and online query computational cost compared to existing methods.Comment: Accepted by ACM MM 202
    • 

    corecore