564 research outputs found

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    Artificial Intelligence in Materials Science: Applications of Machine Learning to Extraction of Physically Meaningful Information from Atomic Resolution Microscopy Imaging

    Get PDF
    Materials science is the cornerstone for technological development of the modern world that has been largely shaped by the advances in fabrication of semiconductor materials and devices. However, the Moore’s Law is expected to stop by 2025 due to reaching the limits of traditional transistor scaling. However, the classical approach has shown to be unable to keep up with the needs of materials manufacturing, requiring more than 20 years to move a material from discovery to market. To adapt materials fabrication to the needs of the 21st century, it is necessary to develop methods for much faster processing of experimental data and connecting the results to theory, with feedback flow in both directions. However, state-of-the-art analysis remains selective and manual, prone to human error and unable to handle large quantities of data generated by modern equipment. Recent advances in scanning transmission electron and scanning tunneling microscopies have allowed imaging and manipulation of materials on the atomic level, and these capabilities require development of automated, robust, reproducible methods.Artificial intelligence and machine learning have dealt with similar issues in applications to image and speech recognition, autonomous vehicles, and other projects that are beginning to change the world around us. However, materials science faces significant challenges preventing direct application of the such models without taking physical constraints and domain expertise into account.Atomic resolution imaging can generate data that can lead to better understanding of materials and their properties through using artificial intelligence methods. Machine learning, in particular combinations of deep learning and probabilistic modeling, can learn to recognize physical features in imaging, making this process automated and speeding up characterization. By incorporating the knowledge from theory and simulations with such frameworks, it is possible to create the foundation for the automated atomic scale manufacturing

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic

    Characterisation of Novel Resistive Switching Memory Devices

    Get PDF
    Resistive random access memory (RRAM) is widely considered as a disruptive technology that will revolutionize not only non-volatile data storage, but also potentially digital logic and neuromorphic computing. The resistive switching mechanism is generally conceived as the rupture/restoration of defect-formed conductive filament (CF) or defect profile modulation, for filamentary and non-filamentary devices respectively. However, details of the underlying microscopic behaviour of the resistive switching in RRAM are still largely missing. In this thesis, a defect probing technique based on the random telegraph noise (RTN) is developed for both filamentary and non-filamentary devices, which can reveal the resistive switching mechanism at defect level and can also be used to analyse the device performance issues. HfO2 is one of the most matured metal-oxide materials in semiconductor industry and HfO2 RRAM shows promising potential in practical application. An RTN-based defect extraction technique is developed for the HfO2 devices to detect individual defect movement and provide statistical information of CF modification during normal operations. A critical filament region (CFR) is observed and further verified by defect movement tracking. Both defect movements and CFR modification are correlated with operation conditions, endurance failure and recovery. Non-filamentary devices have areal switching characteristics, and are promising in overcoming the drawbacks of filamentary devices that mainly come from the stochastic nature of the CF. a-VMCO is an outstanding non-filamentary device with a set of unique characteristics, but its resistive switching mechanism has not been clearly understood yet. By utilizing the RTN-based defect profiling technique, defect profile modulation in the switching layer is identified and correlated with digital and analogue switching behaviours, for the first time. State instability is analysed and a stable resistance window of 10 for >106 cycles is restored through combining optimizations of device structure and operation conditions, paving the way for its practical application. TaOx-based RRAM has shown fast switching in the sub-nanosecond regime, good CMOS compatibility and record endurance of more than 1012 cycles. Several inconsistent models have been proposed for the Ta2O5/TaOx bilayered structure, and it is difficult to quantify and optimize the performance, largely due to the lack of microscopic description of resistive switching based on experimental results. An indepth analysis of the TiN/Ta2O5/TaOx/TiN structured RRAM is carried out with the RTN-based defect probing technique, for both bipolar and unipolar switching modes. Significant differences in defect profile have been observed and explanations have been provided

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists
    • …
    corecore