2,973 research outputs found

    Exploration of robotic-wheel technology for enhanced urban mobility and city scale omni-directional personal transportation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 50-52).Mobility is traditionally thought of as freedom to access more goods and services. However, in my view, mobility is also largely about personal freedom, i.e., the ability to exceed one's physical limitations, in essence, to become "more than human" in physical capabilities. This thesis explores novel designs for omni-directional motion in a mobility scooter, car and bus with the aim of increasing personal mobility and freedom. What links these designs is the use of split active caster wheel robot technology. In the first section, societal and technological impacts of omni-directional motion in the city are examined. The second section of the thesis presents built and rendered prototypes of these three designs. The third and final section, evaluates implementation issues including robotic controls and an algorithm necessary for real world omni-directional mobility.by Raul-David Valdivia Poblano.S.M

    Rearrangement on Lattices with Pick-n-Swaps: Optimality Structures and Efficient Algorithms

    Full text link
    We propose and study a class of rearrangement problems under a novel pick-n-swap prehensile manipulation model, in which a robotic manipulator, capable of carrying an item and making item swaps, is tasked to sort items stored in lattices of variable dimensions in a time-optimal manner. We systematically analyze the intrinsic optimality structure, which is fairly rich and intriguing, under different levels of item distinguishability (fully labeled, where each item has a unique label, or partially labeled, where multiple items may be of the same type) and different lattice dimensions. Focusing on the most practical setting of one and two dimensions, we develop low polynomial time cycle-following based algorithms that optimally perform rearrangements on 1D lattices under both fully- and partially-labeled settings. On the other hand, we show that rearrangement on 2D and higher dimensional lattices becomes computationally intractable to optimally solve. Despite their NP-hardness, we prove that efficient cycle-following based algorithms remain asymptotically optimal for 2D fully- and partially-labeled settings, in expectation, using the interesting fact that random permutations induce only a small number of cycles. We further improve these algorithms to provide 1.x-optimality when the number of items is small. Simulation studies corroborate the effectiveness of our algorithms.Comment: To appear in R:SS 202

    DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    Get PDF

    Semi-preemptive routing on a linear and circular track

    Get PDF
    The problem of routing a robot (or vehicle) between n stations in the plane in order to transport objects is well studied, even if the stations are specially arranged, e.g. on a linear track or circle. The robot may use either all or none of the stations for reloading. We will generalize these concepts of preemptiveness/nonpreemptiveness and emancipate the robot by letting it choose k le n reload-stations. We will show that the problem on the linear and circular track remains polynomial solvable

    An analysis of pure robotic cycles

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Sciences of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 20068Includes bibliographical references leaves 84-87.This thesis is focused on scheduling problems in robotic cells consisting of a number of CNC machines producing identical parts. We consider two different cell layouts which are in-line robotic cells and robot centered cells. The problem is to find the robot move sequence and processing times on machines minimizing the total manufacturing cost and cycle time simultaneously. The automation in manufacturing industry increased the flexibility, however it is not widely studied in the literature. The flexibility of machines enables us to process all the required operations for a part on the same machine. Furthermore, the processing times on CNC machines can be increased or decreased by changing the feed rate and cutting speed. Hence, we assume that a part is processed on one of the machines and the processing times are assumed to be controllable. The flexibility of machines results in a new class of cycles named pure cycles. We determined efficient pure cycles and corresponding processing times dominating the rest of pure cycles in the specified cycle time regions. In addition, for in-line robotic cells, the optimum number of machines is determined for given parameters.Yıldız, SerdarM.S

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper
    corecore