1,676 research outputs found

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    A service broker for Intercloud computing

    Get PDF
    This thesis aims at assisting users in finding the most suitable Cloud resources taking into account their functional and non-functional SLA requirements. A key feature of the work is a Cloud service broker acting as mediator between consumers and Clouds. The research involves the implementation and evaluation of two SLA-aware match-making algorithms by use of a simulation environment. The work investigates also the optimal deployment of Multi-Cloud workflows on Intercloud environments

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled ā€œOptimization for Decision Making IIā€. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    Site Layout and Construction Plan Optimization Using an Integrated Genetic Algorithm Simulation Framework

    Get PDF
    Efficiency of a planned site layout is essential for the successful completion of construction projects. Despite considerable research undertaken for optimizing construction site layouts, most models developed for this purpose have neglected the mutual impacts of the site layout and construction operation variables and are unable to thoroughly model these impacts. This paper outlines a framework enabling planners to anticipate site layout variables (i.e., size, location, and orientation of temporary facilities) and construction plan variables (e.g., resources and material delivery plan), and simultaneously optimize them in an integrated model. In this framework, genetic algorithm (GA) and simulation are integrated; GA heuristically searches for the near-optimum solution with minimum costs by generating feasible candidate solutions, and simulation mimics construction processes and measures the project costs by adopting those candidate solutions. The contribution of this framework is the ability to capture the mutual impacts of site layout and construction plans in a unified simulation model and optimize their variables in GA, which subsequently entails developing a more efficient and realistic plan. Applicability of the framework is presented in a steel erection project

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    PhD Thesis Proposal: Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Get PDF
    Resource optimization in health care, manufacturing, and military operations requires the careful choreography of people and equipment to effectively fulfill the responsibilities of the profession. However, resource optimization is a computationally challenging problem, and poorly utilizing resources can have drastic consequences. Within these professions, there are human domain experts who are able to learn from experience to develop strategies, heuristics, and rules-of-thumb to effectively utilize the resources at their disposal. Manually codifying these heuristics within a computational tool is a laborious process and leaves much to be desired. Even with a codified set of heuristics, it is not clear how to best insert an autonomous decision-support system into the human decision-making process. The aim of this thesis is to develop an autonomous computational method for learning domain-expert heuristics from demonstration that can support the human decision-making process. We propose a new framework, called apprenticeship scheduling, which learns and embeds these heuristics within a scalable resource optimization algorithm for real-time decision-support. Our initial investigation, comprised of developing scalable methods for scheduling and studying shared control in human-machine collaborative resource optimization, inspires the development of our apprenticeship scheduling approach. We present a promising, initial prototype for learning heuristics from demonstration and outline a plan for our continuing work
    • ā€¦
    corecore