23 research outputs found

    Reliable high-data rate body-centric wireless communication

    Get PDF

    Visible Light Communication Cyber Security Vulnerabilities For Indoor And Outdoor Vehicle-To-Vehicle Communication

    Get PDF
    Light fidelity (Li-Fi), developed from the approach of Visible Light Communication (VLC), is a great replacement or complement to existing radio frequency-based (RF) networks. Li-Fi is expected to be deployed in various environments were, due to Wi-Fi congestion and health limitations, RF should not be used. Moreover, VLC can provide the future fifth generation (5G) wireless technology with higher data rates for device connectivity which will alleviate the traffic demand. 5G is playing a vital role in encouraging the modern applications. In 2023, the deployment of all the cellular networks will reach more than 5 billion users globally. As a result, the security and privacy of 5G wireless networks is an essential problem as those modern applications are in people\u27s life everywhere. VLC security is as one of the core physical-layer security (PLS) solutions for 5G networks. Due to the fact that light does not penetrate through solid objects or walls, VLC naturally has higher security and privacy for indoor wireless networks compared to RF networks. However, the broadcasting nature of VLC caused concerns, e.g., eavesdropping, have created serious attention as it is a crucial step to validate the success of VLC in wild. The aim of this thesis is to properly address the security issues of VLC and further enhance the VLC nature security. We analyzed the secrecy performance of a VLC model by studying the characteristics of the transmitter, receiver and the visible light channel. Moreover, we mitigated the security threats in the VLC model for the legitimate user, by 1) implementing more access points (APs) in a multiuser VLC network that are cooperated, 2) reducing the semi-angle of LED to help improve the directivity and secrecy and, 3) using the protected zone strategy around the AP where eavesdroppers are restricted. According to the model\u27s parameters, the results showed that the secrecy performance in the proposed indoor VLC model and the vehicle-to-vehicle (V2V) VLC outdoor model using a combination of multiple PLS techniques as beamforming, secure communication zones, and friendly jamming is enhanced. The proposed model security performance was measured with respect to the signal to noise ratio (SNR), received optical power, and bit error rate (BER) Matlab simulation results

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Ultra-wideband MIMO radio channel characterisation for body-centric wireless communication

    Get PDF
    No abstract available

    Performances de l'optique sans fil pour les réseaux de capteurs corporels

    Get PDF
    This thesis deals with the performance of optical girelles communications for body area networks (BAN) as an alternative solution to the radiofrequency one, in the context of mobile healthcare monitoring. After presenting the main characteristics of a BAN using the radiofrequency technology, specifically in the UWB band, we explain the advantages of the optical wireless technology. Diffuse propagation based on infrared technology is then considered for BAN, exploiting optical reflections from environment surfaces. Several optical wireless channel modeling methods are introduced, and we consider two solutions for the link between two on-body nodes: a classical method named “one reflection model”, used to estimate performance variations, and a ray-launching method, used to take into account a great amount of optical reflections. Considering several scenarios, we determine the outage probability, and show that the diffuse optical wireless technology is able to achieve an on-body link, with the data rates and the quality of service required by health monitoring applications, for a transmitted power far lower than the limit defined in standards. Then, we evaluate the theoretical performance, in terms of error probability, of an optical wireless BAN, considering the optical code division multiple access technique. Finally, we show that a BAN using optical wireless technology is theoretically feasible, regarding a health monitoring application, and considering the mobility of the patient in indoor environment.Cette thèse aborde les performances d’un réseau corporel utilisant la technologie optique sans fil, comme alternative aux radiofréquences. L’application visée concerne la télésurveillance de patients mobiles, en milieu hospitalier. Après avoir défini les principales caractéristiques des réseaux corporels radiofréquences, notamment dans le cas de l’ultra large bande, nous présentons les avantages à utiliser la technologie optique sans fil. Nous considérons ensuite cette technologie en infrarouge, avec une méthode de propagation dite diffuse, exploitant les réflexions des rayons optiques dans l’environnement du réseau corporel. Les différentes méthodes de modélisation d’un canal optique diffus sont introduites, et nous utilisons deux types de méthodes pour modéliser le canal entre deux noeuds portés : un modèle classique dit « à une réflexion », permettant d’évaluer rapidement des variations de performances, et une méthode de lancer de rayon pour considérer un grand nombre de réflexions. En utilisant différents scénarios, ainsi que la notion de probabilité de rupture, nous montrons que l’optique diffuse permet de réaliser un lien corporel, pour les débits et la qualité de service requise par une application de télésurveillance médicale, et pour une puissance de transmission très inférieure à la limite imposée par la sécurité oculaire. Finalement, nous étudions les performances théoriques d’un réseau corporel en optique diffuse en termes de probabilité d’erreur, avec une gestion de l’accès multiple réalisé par répartition de codes optiques. Nous concluons qu’un réseau de capteurs corporels en optique diffuse est théoriquement réalisable, pour une application médicale de surveillance de patients mobiles dans l’environnement

    Development of an Encrypted Wireless System for Body Sensor Network Applications

    Get PDF
    Wireless body area networks (WBAN), also called wireless body sensor networks (WBSN), consist of a collection of wireless sensor nodes used to monitor and assess various human physiological conditions, which can then be used by healthcare professionals to help them make important healthcare decisions. They can be used to prevent disease, help diagnosis a disease, or manage the symptoms of a disease. An extremely important aspect of WBAN is security to protect a patient\u27s healthcare information, as a hacker could potentially cause fatal harm. Current security measures are implemented in software at the MAC layer and higher, not in the physical layer. Previous research demonstrated a chaotic encryption cipher to add a layer of security in the physical layer. This cipher exploits different properties of the Lorenz chaotic system to encrypt and decrypt digital data. Decryption involved synchronizing two chaotic signals to recover original data by sharing a state between the transmitter and receiver. In this thesis, we further develop the encryption system by implementing wireless capabilities. We use two approaches: the first by using commercially available wireless microcontrollers that communicate using Bluetooth Low Energy, and the second by the design and fabrication of a dual-band low noise amplifier (LNA) that can be used in a receiver for WBANs collecting data from implantable and on-the-body sensors. For the first approach, a custom Bluetooth Low Energy profile was created for streaming the analog encrypted signal, and signal processing was done at the receiver side. For the second approach, the LNA operates at the Medical Implant Communication System (MICS) band and the 915 MHz Industrial, Scientific, and Medical (ISM) band simultaneously through dual-band input and output matching networks

    Radio channel characterisation and system-level modelling for ultra wideband body-centric wireless communications

    Get PDF
    PhDThe next generation of wireless communication is evolving towards user-centric networks, where constant and reliable connectivity and services are essential. Bodycentric wireless network (BCWN) is the most exciting and emerging 4G technology for short (1-5 m) and very short (below 1 m) range communication systems. It has got numerous applications including healthcare, entertainment, surveillance, emergency, sports and military. The major difference between the BCWN and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile medium from the radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio propagation channel parameters and hence the system performance. In addition, fading is another concern that affects the reliability and quality of the wireless link, which needs to be taken into account for a low cost and reliable wireless communication system for body-centric networks. The complex nature of the BCWN requires operating wireless devices to provide low power requirements, less complexity, low cost and compactness in size. Apart from these characteristics, scalable data rates and robust performance in most fading conditions and jamming environment, even at low signal to noise ratio (SNR) is needed. Ultra-wideband (UWB) technology is one of the most promising candidate for BCWN as it tends to fulfill most of these requirements. The thesis focuses on the characterisation of ultra wideband body-centric radio propagation channel using single and multiple antenna techniques. Apart from channel characterisation, system level modelling of potential UWB radio transceivers for body-centric wireless network is also proposed. Channel models with respect to large scale and delay analysis are derived from measured parameters. Results and analyses highlight the consequences of static and dynamic environments in addition to the antenna positions on the performance of body-centric wireless communication channels. Extensive measurement i campaigns are performed to analyse the significance of antenna diversity to combat the channel fading in body-centric wireless networks. Various diversity combining techniques are considered in this process. Measurement data are also used to predict the performance of potential UWB systems in the body-centric wireless networks. The study supports the significance of single and multiple antenna channel characterisation and modelling in producing suitable wireless systems for ultra low power body-centric wireless networks.University of Engineering and Technology Lahore Pakista

    Physical-layer security in 6G networks

    Get PDF
    The sixth generation (6G) of mobile network will be composed by different nodes, from macro-devices (satellite) to nano-devices (sensors inside the human body), providing a full connectivity fabric all around us. These heterogeneous nodes constitute an ultra dense network managing tons of information, often very sensitive. To trust the services provided by such network, security is a mandatory feature by design. In this scenario, physical-layer security (PLS) can act as a first line of defense, providing security even to low-resourced nodes in different environments. This paper discusses challenges, solutions and visions of PLS in beyond-5G networks
    corecore