996 research outputs found

    Automata-based Adaptive Behavior for Economical Modelling Using Game Theory

    Full text link
    In this chapter, we deal with some specific domains of applications to game theory. This is one of the major class of models in the new approaches of modelling in the economic domain. For that, we use genetic automata which allow to build adaptive strategies for the players. We explain how the automata-based formalism proposed - matrix representation of automata with multiplicities - allows to define semi-distance between the strategy behaviors. With that tools, we are able to generate an automatic processus to compute emergent systems of entities whose behaviors are represented by these genetic automata

    Fuzzy Automata: A Quantitative Review

    Get PDF
    Classical automata theory cannot deal with the system uncertainty. To deal with the system uncertainty the concept of fuzzy finite automata was proposed. Fuzzy automata can be used in diverse applications such as fault detection, pattern matching, measuring the fuzziness between strings, description of natural languages, neural network, lexical analysis, image processing, scheduling problem and many more. In this paper, a methodical literature review is carried out on various research works in the field of Fuzzy automata and explained the challenging issues in the field of fuzzy automata

    Proceedings of the Eindhoven FASTAR Days 2004 : Eindhoven, The Netherlands, September 3-4, 2004

    Get PDF
    The Eindhoven FASTAR Days (EFD) 2004 were organized by the Software Construction group of the Department of Mathematics and Computer Science at the Technische Universiteit Eindhoven. On September 3rd and 4th 2004, over thirty participants|hailing from the Czech Republic, Finland, France, The Netherlands, Poland and South Africa|gathered at the Department to attend the EFD. The EFD were organized in connection with the research on finite automata by the FASTAR Research Group, which is centered in Eindhoven and at the University of Pretoria, South Africa. FASTAR (Finite Automata Systems|Theoretical and Applied Research) is an in- ternational research group that aims to lead in all areas related to finite state systems. The work in FASTAR includes both core and applied parts of this field. The EFD therefore focused on the field of finite automata, with an emphasis on practical aspects and applications. Eighteen presentations, mostly on subjects within this field, were given, by researchers as well as students from participating universities and industrial research facilities. This report contains the proceedings of the conference, in the form of papers for twelve of the presentations at the EFD. Most of them were initially reviewed and distributed as handouts during the EFD. After the EFD took place, the papers were revised for publication in these proceedings. We would like to thank the participants for their attendance and presentations, making the EFD 2004 as successful as they were. Based on this success, it is our intention to make the EFD into a recurring event. Eindhoven, December 2004 Loek Cleophas Bruce W. Watso

    Approximating the Termination Value of One-Counter MDPs and Stochastic Games

    Get PDF
    One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic games played on the transition graph of classic one-counter automata (equivalently, pushdown automata with a 1-letter stack alphabet). A key objective for the analysis and verification of these games is the termination objective, where the players aim to maximize (minimize, respectively) the probability of hitting counter value 0, starting at a given control state and given counter value. Recently, we studied qualitative decision problems ("is the optimal termination value = 1?") for OC-MDPs (and OC-SSGs) and showed them to be decidable in P-time (in NP and coNP, respectively). However, quantitative decision and approximation problems ("is the optimal termination value ? p", or "approximate the termination value within epsilon") are far more challenging. This is so in part because optimal strategies may not exist, and because even when they do exist they can have a highly non-trivial structure. It thus remained open even whether any of these quantitative termination problems are computable. In this paper we show that all quantitative approximation problems for the termination value for OC-MDPs and OC-SSGs are computable. Specifically, given a OC-SSG, and given epsilon > 0, we can compute a value v that approximates the value of the OC-SSG termination game within additive error epsilon, and furthermore we can compute epsilon-optimal strategies for both players in the game. A key ingredient in our proofs is a subtle martingale, derived from solving certain LPs that we can associate with a maximizing OC-MDP. An application of Azuma's inequality on these martingales yields a computable bound for the "wealth" at which a "rich person's strategy" becomes epsilon-optimal for OC-MDPs.Comment: 35 pages, 1 figure, full version of a paper presented at ICALP 2011, invited for submission to Information and Computatio
    corecore