47,103 research outputs found

    Online Supplement to `Efficient Simulation Resource Sharing and Allocation for Selecting the Best'

    Get PDF
    This is the online supplement to the article by the same authors, "Efficient Simulation Resource Sharing and Allocation for Selecting the Best," published in the IEEE Transactions on Automatic Control

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Adaptive Beam-Frequency Allocation Algorithm with Position Uncertainty for Millimeter-Wave MIMO Systems

    Full text link
    Envisioned for fifth generation (5G) systems, millimeter-wave (mmWave) communications are under very active research worldwide. Although pencil beams with accurate beamtracking may boost the throughput of mmWave systems, this poses great challenges in the design of radio resource allocation for highly mobile users. In this paper, we propose a joint adaptive beam-frequency allocation algorithm that takes into account the position uncertainty inherent to high mobility and/or unstable users as, e.g., Unmanned Aerial Vehicles (UAV), for whom this is a major problem. Our proposed method provides an optimized beamwidth selection under quality of service (QoS) requirements for maximizing system proportional fairness, under user position uncertainty. The rationale of our scheme is to adapt the beamwidth such that the best trade-off among system performance (narrower beam) and robustness to uncertainty (wider beam) is achieved. Simulation results show that the proposed method largely enhances the system performance compared to reference algorithms, by an appropriate adaptation of the mmWave beamwidths, even under severe uncertainties and imperfect channel state information (CSIs).Comment: 5 pages, 6 figures, 1 table, 1 algorith
    • …
    corecore