156 research outputs found

    Weighted simplicial complex reconstruction from mobile laser scanning using sensor topology

    Full text link
    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points, weighted according to its distance to the sensor, and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create and filter triangles for each triplet of self-connected edges and according to their local planarity. We compare our results to an unweighted simplicial complex reconstruction.Comment: 8 pages, 11 figures, CFPT 2018. arXiv admin note: substantial text overlap with arXiv:1802.0748

    On the Reconstruction of Geodesic Subspaces of RN\mathbb{R}^N

    Full text link
    We consider the topological and geometric reconstruction of a geodesic subspace of RN\mathbb{R}^N both from the \v{C}ech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our reconstruction technique leverages the intrinsic length metric induced by the geodesics on the subspace. We consider the distortion and convexity radius as our sampling parameters for a successful reconstruction. For a geodesic subspace with finite distortion and positive convexity radius, we guarantee a correct computation of its homotopy and homology groups from the sample. For geodesic subspaces of R2\mathbb{R}^2, we also devise an algorithm to output a homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown shape of interest

    Towards Persistence-Based Reconstruction in Euclidean Spaces

    Get PDF
    Manifold reconstruction has been extensively studied for the last decade or so, especially in two and three dimensions. Recently, significant improvements were made in higher dimensions, leading to new methods to reconstruct large classes of compact subsets of Euclidean space Rd\R^d. However, the complexities of these methods scale up exponentially with d, which makes them impractical in medium or high dimensions, even for handling low-dimensional submanifolds. In this paper, we introduce a novel approach that stands in-between classical reconstruction and topological estimation, and whose complexity scales up with the intrinsic dimension of the data. Specifically, when the data points are sufficiently densely sampled from a smooth mm-submanifold of Rd\R^d, our method retrieves the homology of the submanifold in time at most c(m)n5c(m)n^5, where nn is the size of the input and c(m)c(m) is a constant depending solely on mm. It can also provably well handle a wide range of compact subsets of Rd\R^d, though with worse complexities. Along the way to proving the correctness of our algorithm, we obtain new results on \v{C}ech, Rips, and witness complex filtrations in Euclidean spaces

    Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web

    Full text link
    We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α\alpha. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α\alpha, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution and scale-dependence of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web and yields a promising measure of cosmological parameters. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field.Comment: 42 pages, 14 figure

    On topological data analysis for structural dynamics: an introduction to persistent homology

    Full text link
    Topological methods can provide a way of proposing new metrics and methods of scrutinising data, that otherwise may be overlooked. In this work, a method of quantifying the shape of data, via a topic called topological data analysis will be introduced. The main tool within topological data analysis (TDA) is persistent homology. Persistent homology is a method of quantifying the shape of data over a range of length scales. The required background and a method of computing persistent homology is briefly discussed in this work. Ideas from topological data analysis are then used for nonlinear dynamics to analyse some common attractors, by calculating their embedding dimension, and then to assess their general topologies. A method will also be proposed, that uses topological data analysis to determine the optimal delay for a time-delay embedding. TDA will also be applied to a Z24 Bridge case study in structural health monitoring, where it will be used to scrutinise different data partitions, classified by the conditions at which the data were collected. A metric, from topological data analysis, is used to compare data between the partitions. The results presented demonstrate that the presence of damage alters the manifold shape more significantly than the effects present from temperature

    Approximating Local Homology from Samples

    Full text link
    Recently, multi-scale notions of local homology (a variant of persistent homology) have been used to study the local structure of spaces around a given point from a point cloud sample. Current reconstruction guarantees rely on constructing embedded complexes which become difficult in high dimensions. We show that the persistence diagrams used for estimating local homology, can be approximated using families of Vietoris-Rips complexes, whose simple constructions are robust in any dimension. To the best of our knowledge, our results, for the first time, make applications based on local homology, such as stratification learning, feasible in high dimensions.Comment: 23 pages, 14 figure

    Dimension Detection with Local Homology

    Full text link
    Detecting the dimension of a hidden manifold from a point sample has become an important problem in the current data-driven era. Indeed, estimating the shape dimension is often the first step in studying the processes or phenomena associated to the data. Among the many dimension detection algorithms proposed in various fields, a few can provide theoretical guarantee on the correctness of the estimated dimension. However, the correctness usually requires certain regularity of the input: the input points are either uniformly randomly sampled in a statistical setting, or they form the so-called (ε,δ)(\varepsilon,\delta)-sample which can be neither too dense nor too sparse. Here, we propose a purely topological technique to detect dimensions. Our algorithm is provably correct and works under a more relaxed sampling condition: we do not require uniformity, and we also allow Hausdorff noise. Our approach detects dimension by determining local homology. The computation of this topological structure is much less sensitive to the local distribution of points, which leads to the relaxation of the sampling conditions. Furthermore, by leveraging various developments in computational topology, we show that this local homology at a point zz can be computed \emph{exactly} for manifolds using Vietoris-Rips complexes whose vertices are confined within a local neighborhood of zz. We implement our algorithm and demonstrate the accuracy and robustness of our method using both synthetic and real data sets
    • …
    corecore