3,169 research outputs found

    Geometric, Feature-based and Graph-based Approaches for the Structural Analysis of Protein Binding Sites : Novel Methods and Computational Analysis

    Get PDF
    In this thesis, protein binding sites are considered. To enable the extraction of information from the space of protein binding sites, these binding sites must be mapped onto a mathematical space. This can be done by mapping binding sites onto vectors, graphs or point clouds. To finally enable a structure on the mathematical space, a distance measure is required, which is introduced in this thesis. This distance measure eventually can be used to extract information by means of data mining techniques

    Efficient search and comparison algorithms for 3D protein binding site retrieval and structure alignment from large-scale databases

    Get PDF
    Finding similar 3D structures is crucial for discovering potential structural, evolutionary, and functional relationships among proteins. As the number of known protein structures has dramatically increased, traditional methods can no longer provide the life science community with the adequate informatics capability needed to conduct large-scale and complex analyses. A suite of high-throughput and accurate protein structure search and comparison methods is essential. To meet the needs of the community, we develop several bioinformatics methods for protein binding site comparison and global structure alignment. First, we developed an efficient protein binding site search that is based on extracting geometric features both locally and globally. The main idea of this work was to capture spatial relationships among landmarks of binding site surfaces and bfuild a vocabulary of visual words to represent the characteristics of the surfaces. A vector model was then used to speed up the search of similar surfaces that share similar visual words with the query interface. Second, we developed an approach for accurate protein binding site comparison. Our algorithm provides an accurate binding site alignment by applying a two-level heuristic process which progressively refines alignment results from coarse surface point level to accurate residue atom level. This setting allowed us to explore different combinations of pairs of corresponding residues, thus improving the alignment quality of the binding site surfaces. Finally, we introduced a parallel algorithm for global protein structure alignment. Specifically, to speed up the time-consuming structure alignment process of protein 3D structures, we designed a parallel protein structure alignment framework to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, the framework is capable of parallelizing traditional structure alignment algorithms. Our findings can be applied in various research areas, such as prediction of protein inte

    Methods for the Efficient Comparison of Protein Binding Sites and for the Assessment of Protein-Ligand Complexes

    Get PDF
    In the present work, accelerated methods for the comparison of protein binding sites as well as an extended procedure for the assessment of ligand poses in protein binding sites are presented. Protein binding site comparisons are frequently used receptor-based techniques in early stages of the drug development process. Binding sites of other proteins which are similar to the binding site of the target protein can offer hints for possible side effects of a new drug prior to clinical studies. Moreover, binding site comparisons are used as an idea generator for bioisosteric replacements of individual functional groups of the newly developed drug and to unravel the function of hitherto orphan proteins. The structural comparison of binding sites is especially useful when applied on distantly related proteins as a comparison solely based on the amino acid sequence is not sufficient in such cases. Methods for the assessment of ligand poses in protein binding sites are also used in the early phase of drug development within docking programs. These programs are utilized to screen entire libraries of molecules for a possible ligand of a binding site and to furthermore estimate in which conformation the ligand will most likely bind. By employing this information, molecule libraries can be filtered for subsequent affinity assays and molecular structures can be refined with regard to affinity and selectivity

    Three dimensional shape comparison of flexible proteins using the local-diameter descriptor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Techniques for inferring the functions of the protein by comparing their shape similarity have been receiving a lot of attention. Proteins are functional units and their shape flexibility occupies an essential role in various biological processes. Several shape descriptors have demonstrated the capability of protein shape comparison by treating them as rigid bodies. But this may give rise to an incorrect comparison of flexible protein shapes.</p> <p>Results</p> <p>We introduce an efficient approach for comparing flexible protein shapes by adapting a <it>local diameter </it>(LD) <it>descriptor</it>. The LD descriptor, developed recently to handle skeleton based shape deformations <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>, is adapted in this work to capture the invariant properties of shape deformations caused by the motion of the protein backbone. Every sampled point on the protein surface is assigned a value measuring the diameter of the 3D shape in the neighborhood of that point. The LD descriptor is built in the form of a one dimensional histogram from the distribution of the diameter values. The histogram based shape representation reduces the shape comparison problem of the flexible protein to a simple distance calculation between 1D feature vectors. Experimental results indicate how the LD descriptor accurately treats the protein shape deformation. In addition, we use the LD descriptor for protein shape retrieval and compare it to the effectiveness of conventional shape descriptors. A sensitivity-specificity plot shows that the LD descriptor performs much better than the conventional shape descriptors in terms of consistency over a family of proteins and discernibility across families of different proteins.</p> <p>Conclusion</p> <p>Our study provides an effective technique for comparing the shape of flexible proteins. The experimental results demonstrate the insensitivity of the LD descriptor to protein shape deformation. The proposed method will be potentially useful for molecule retrieval with similar shapes and rapid structure retrieval for proteins. The demos and supplemental materials are available on <url>https://engineering.purdue.edu/PRECISE/LDD</url>.</p

    IDSS: deformation invariant signatures for molecular shape comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many molecules of interest are flexible and undergo significant shape deformation as part of their function, but most existing methods of molecular shape comparison (MSC) treat them as rigid bodies, which may lead to incorrect measure of the shape similarity of flexible molecules.</p> <p>Results</p> <p>To address the issue we introduce a new shape descriptor, called Inner Distance Shape Signature (IDSS), for describing the 3D shapes of flexible molecules. The inner distance is defined as the length of the shortest path between landmark points within the molecular shape, and it reflects well the molecular structure and deformation without explicit decomposition. Our IDSS is stored as a histogram which is a probability distribution of inner distances between all sample point pairs on the molecular surface. We show that IDSS is insensitive to shape deformation of flexible molecules and more effective at capturing molecular structures than traditional shape descriptors. Our approach reduces the 3D shape comparison problem of flexible molecules to the comparison of IDSS histograms.</p> <p>Conclusion</p> <p>The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. We demonstrate the effectiveness of IDSS within a molecular search engine application for a benchmark containing abundant conformational changes of molecules. Such comparisons in several thousands per second can be carried out. The presented IDSS method can be considered as an alternative and complementary tool for the existing methods for rigid MSC. The binary executable program for Windows platform and database are available from <url>https://engineering.purdue.edu/PRECISE/IDSS</url>.</p

    Quantifying similarity between motifs

    Get PDF
    A common question within the context of de novo motif discovery is whether a newly discovered, putative motif resembles any previously discovered motif in an existing database. To answer this question, we define a statistical measure of motif-motif similarity, and we describe an algorithm, called Tomtom, for searching a database of motifs with a given query motif. Experimental simulations demonstrate the accuracy of Tomtom's E values and its effectiveness in finding similar motifs

    3DMolNavi: A Web-Based Retrieval and Navigation Tool for Flexible Molecular Shape Comparison.

    Get PDF
    Background Many molecules of interest are flexible and undergo significant shape deformation as part of their function, but most existing methods of molecular shape comparison treat them as rigid shapes, which may lead to incorrect measure of the shape similarity of flexible molecules. Currently, there still is a limited effort in retrieval and navigation for flexible molecular shape comparison, which would improve data retrieval by helping users locate the desirable molecule in a convenient way. Results To address this issue, we develop a web-based retrieval and navigation tool, named 3DMolNavi, for flexible molecular shape comparison. This tool is based on the histogram of Inner Distance Shape Signature (IDSS) for fast retrieving molecules that are similar to a query molecule, and uses dimensionality reduction to navigate the retrieved results in 2D and 3D spaces. We tested 3DMolNavi in the Database of Macromolecular Movements (MolMovDB) and CATH. Compared to other shape descriptors, it achieves good performance and retrieval results for different classes of flexible molecules. Conclusions The advantages of 3DMolNavi, over other existing softwares, are to integrate retrieval for flexible molecular shape comparison and enhance navigation for user’s interaction. 3DMolNavi can be accessed via https://engineering.purdue.edu/PRECISE/3dmolnavi/index.html webcite
    • …
    corecore