56,471 research outputs found

    A Distributed Algorithm for Directed Minimum-Weight Spanning Tree

    Get PDF

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    Data-Efficient Minimax Quickest Change Detection with Composite Post-Change Distribution

    Full text link
    The problem of quickest change detection is studied, where there is an additional constraint on the cost of observations used before the change point and where the post-change distribution is composite. Minimax formulations are proposed for this problem. It is assumed that the post-change family of distributions has a member which is least favorable in some sense. An algorithm is proposed in which on-off observation control is employed using the least favorable distribution, and a generalized likelihood ratio based approach is used for change detection. Under the additional condition that either the post-change family of distributions is finite, or both the pre- and post-change distributions belong to a one parameter exponential family, it is shown that the proposed algorithm is asymptotically optimal, uniformly for all possible post-change distributions.Comment: Submitted to IEEE Transactions on Info. Theory, Oct 2014. Preliminary version presented at ISIT 2014 at Honolulu, Hawai
    • …
    corecore