11 research outputs found

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    A Distributed Architecture for Spam Mitigation on 4G Mobile Networks

    Get PDF
    The 4G of mobile networks is considered a technology-opportunistic and user-centric system combining the economical and technological advantages of various transmission technologies. Part of its new architecture dubbed as the System Architecture Evolution, 4G mobile networks will implement an evolved packet core. Although this will provide various critical advantages, it will however expose telecom networks to serious IP-based attacks. One often adopted solution by the industry to mitigate such attacks is based on a centralized security architecture. This centralized approach nonetheless, requires large processing resources to handle huge amount of traffic, which results in a significant over dimensioning problem in the centralized nodes causing this approach to fail from achieving its security task.\\ In this thesis, we primarily contribute by highlighting on two Spam flooding attacks, namely RTP VoIP SPIT and SMTP SPAM and demonstrating, through simulations and comparisons, their feasibility and DoS impact on 4G mobile networks and subsequent effects on mobile network operators. We further contribute by proposing a distributed architecture on the mobile architecture that is secure by mitigating those attacks, efficient by solving the over dimensioning problem and cost-effective by utilizing `off the shelf' low-cost hardware in the distributed nodes. Through additional simulation and analysis, we reveal the viability and effectiveness of our approach

    ROBUST AND RELIABLE WIRELESS COMMUNICATION BETWEEN SMART NOx SENSOR AND THE SPEEDGOAT/ENGINE CONTROL MODULE: A case study of Wärtsilä’s smart NOx sensor and W4L20 Diesel Engine

    Get PDF
    In recent years, the industrial applications of the wireless transmission of data acquired through sensors have been growing. Addressing the challenges or requirements that come with this needs the integration of new product designs and manufacturing techniques with automation devices. Factors like development time, security, reliability, transmission in an industrial environment, data rate, battery life with energy harvesting capabilities, etc. are of major concerns. This thesis is based on the Wärtsilä smart NOx sensor case study which investigates the possibility of replacing the existing wired CAN bus connection between the smart NOx sensor and the rapid control prototyping system speedgoat and possibly in the future the Engine Control Unit (ECU) with a wireless communication solution. The designed prototype would wirelessly transmit the smart NOx sensor data. The smart NOx sensor data is received using a CAN bus integrated with a wireless transmitter module. The wireless receiver module receives the data and then relays the CAN frames through an integrated CAN Bus to the speedgoat. A matlab simulink module has been programmed into the speedgoat to receive the CAN frames, calculate O2% and NOx ppm values and display the results on a monitor connected to the speedgoat. Criteria like transmission in industrial environments, packet loss, RSSI, bit error rate, reliability and security of the wireless solution are analyzed. According to the analysis done and best practices, a wireless solution is recommended and implemented. The wireless-CAN prototype is installed on the Wärtsilä W4L20 diesel engine in VEBIC for monitoring and observation.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Advances in SCA and RF-DNA Fingerprinting Through Enhanced Linear Regression Attacks and Application of Random Forest Classifiers

    Get PDF
    Radio Frequency (RF) emissions from electronic devices expose security vulnerabilities that can be used by an attacker to extract otherwise unobtainable information. Two realms of study were investigated here, including the exploitation of 1) unintentional RF emissions in the field of Side Channel Analysis (SCA), and 2) intentional RF emissions from physical devices in the field of RF-Distinct Native Attribute (RF-DNA) fingerprinting. Statistical analysis on the linear model fit to measured SCA data in Linear Regression Attacks (LRA) improved performance, achieving 98% success rate for AES key-byte identification from unintentional emissions. However, the presence of non-Gaussian noise required the use of a non-parametric classifier to further improve key guessing attacks. RndF based profiling attacks were successful in very high dimensional data sets, correctly guessing all 16 bytes of the AES key with a 50,000 variable dataset. With variable reduction, Random Forest still outperformed Template Attack for this data set, requiring fewer traces and achieving higher success rates with lower misclassification rate. Finally, the use of a RndF classifier is examined for intentional RF emissions from ZigBee devices to enhance security using RF-DNA fingerprinting. RndF outperformed parametric MDA/ML and non-parametric GRLVQI classifiers, providing up to GS =18.0 dB improvement (reduction in required SNR). Network penetration, measured using rogue ZigBee devices, show that the RndF method improved rogue rejection in noisier environments - gains of up to GS =18.0 dB are realized over previous methods

    Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

    Get PDF
    Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Arquitectura de un sistema C4ISR para pequeñas unidades

    Full text link
    La presente tesis doctoral aborda el problema de los sistemas de mando y control, y en concreto los sistemas C4ISR. Los sistemas C4ISr (Command Control, Computers and Communications Information Surveillance and Reconaissance) engloban un amplio número de arquitecturas y sistemas informáticos y de comunicaciones. Su principal finalidad, tanto en aplicaciones civiles como militares, es la de obtener información sobre el estado del teatro de operaciones para entregársela, convenientemente formateada, a las personas al mando de una operación de forma que se construyan una adecuada visión del mismo que les permita tomar las decisiones correctas. Por otra parte, deben servir de plataforma de comunicaciones para transmitir dichas órdenes y cualquier otra información que se estime oportuna. La presente tesis doctoral se centra en identificar las necesidades existentes en mando y control a nivel táctico, tanto en la vertiente civil como en la militar, y plantear una arquitectura global para sistemas C4ISR que permita diseñar, desarrollar e implementar una solución de sistema de mando y control de pequeñas unidades (nivel de batallón e inferiores) para mejorar la conciencia situacional, tanto individual como como compartida, de los comandantes en esos niveles. Se ha promovido el planteamiento de arquitecturas y el desarrollo de sistemas que implementen los novedosos conceptos de mando y control, detectados en la literatura científica reciente, para la consecución de la efectividad en el cumplimiento de una misión, siguiendo la filosofía COTS (Commercial off-the self), enfatizando el uso de estándares en todos sus componentes y una aproximación OSS (open source software) en el desarrollo de componentes software, e integrando fluljos multimedia como una de las principales aportaciones. Para ello se ha realizado un exhaustivo y profundo análisis del estado del arte acerca de los sistemas de mando y control, desde sus comienzos hasta las últimas propuestas. Esto nos ha conducidoPérez Llopis, I. (2009). Arquitectura de un sistema C4ISR para pequeñas unidades [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6067Palanci
    corecore