41 research outputs found

    Subspace self-collision culling

    Get PDF

    A biomechanics-based articulation model for medical applications

    Get PDF
    Computer Graphics came into the medical world especially after the arrival of 3D medical imaging. Computer Graphics techniques are already integrated in the diagnosis procedure by means of the visual tridimensional analysis of computer tomography, magnetic resonance and even ultrasound data. The representations they provide, nevertheless, are static pictures of the patients' body, lacking in functional information. We believe that the next step in computer assisted diagnosis and surgery planning depends on the development of functional 3D models of human body. It is in this context that we propose a model of articulations based on biomechanics. Such model is able to simulate the joint functionality in order to allow for a number of medical applications. It was developed focusing on the following requirements: it must be at the same time simple enough to be implemented on computer, and realistic enough to allow for medical applications; it must be visual in order for applications to be able to explore the joint in a 3D simulation environment. Then, we propose to combine kinematical motion for the parts that can be considered as rigid, such as bones, and physical simulation of the soft tissues. We also deal with the interaction between the different elements of the joint, and for that we propose a specific contact management model. Our kinematical skeleton is based on anatomy. Special considerations have been taken to include anatomical features like axis displacements, range of motion control, and joints coupling. Once a 3D model of the skeleton is built, it can be simulated by data coming from motion capture or can be specified by a specialist, a clinician for instance. Our deformation model is an extension of the classical mass-spring systems. A spherical volume is considered around mass points, and mechanical properties of real materials can be used to parameterize the model. Viscoelasticity, anisotropy and non-linearity of the tissues are simulated. We particularly proposed a method to configure the mass-spring matrix such that the objects behave according to a predefined Young's modulus. A contact management model is also proposed to deal with the geometric interactions between the elements inside the joint. After having tested several approaches, we proposed a new method for collision detection which measures in constant time the signed distance to the closest point for each point of two meshes subject to collide. We also proposed a method for collision response which acts directly on the surfaces geometry, in a way that the physical behavior relies on the propagation of reaction forces produced inside the tissue. Finally, we proposed a 3D model of a joint combining the three elements: anatomical skeleton motion, biomechanical soft tissues deformation, and contact management. On the top of that we built a virtual hip joint and implemented a set of medical applications prototypes. Such applications allow for assessment of stress distribution on the articular surfaces, range of motion estimation based on ligament constraint, ligament elasticity estimation from clinically measured range of motion, and pre- and post-operative evaluation of stress distribution. Although our model provides physicians with a number of useful variables for diagnosis and surgery planning, it should be improved for effective clinical use. Validation has been done partially. However, a global clinical validation is necessary. Patient specific data are still difficult to obtain, especially individualized mechanical properties of tissues. The characterization of material properties in our soft tissues model can also be improved by including control over the shear modulus

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character

    Contact modeling and collision detection in human joints

    Get PDF
    Collision detection among virtual objects is one of the main concerns in virtual reality and computer graphics. Usually the methods developed for collision detection are for either very general cases or very specific applications. The first main goal of this thesis is to propose accurate methods for collision detection in computer graphics for rotating or sliding objects. The methods take advantage of the limitation imposed on the rotating/sliding objects in order to ignore unnecessary calculations of the general methods and speed up the processing. In addition to finding the collision, the methods can also return penetration depths in either radial or cylindrical direction, which can be useful for further applications. The second main goal is to apply the proposed collision detection methods in biomedical research related to human hip joints. In fact, during the past few years, femoroacetabular impingement (FAI) was recognized as the leading pathomechanism contributing to a significant number of so-called "primary" hip osteoarthritis. Thus, having medical simulation of hip joint can help both physicians and surgeons for better diagnosis and surgical planning. For diagnosing some of the human joint diseases, it is important to obtain the joint's range of motion. By modifying the pre-processing stage of one of the collision detection methods, a new fast method for finding maximum range of motion in human joint was proposed and tested. The method is working without doing any collision detection tests and its accuracy does not depend on the rotational steps. We also suggested a novel fast strategy for diagnosing hip diseases based on hip contact penetration depths. In this strategy, the contact penetration depths during hip movement are calculated for diagnosing hip impingements, by using the proposed collision detection methods. The strategy has been tested on pathological hip models during a daily activity. The results were found correlated with the contact stresses estimated by finite element method (FEM). By evaluating the results, the strategy proved to be capable for distinguishing among different hip pathologies (e.g. cam and pincer impingements). In orthopedic simulations, the behavior of the bones and the related tissues are usually investigated during their movements about an estimated center of rotation. We also evaluated the importance of the hip joint center of rotation in medical simulations. For this reason, different centers of rotation calculated by five different methods were applied for hip movements about different medical axes of rotation. By calculating the hip contact penetration depths of ten patients during hip movements (using the proposed collision detection methods), the sensitivity of hip simulations to hip center of rotation has been evaluated. Hip contact pressure has been a notable parameter to evaluate the physical conditions inside the hip joint. Many computational approaches estimate the pressure and contact pressures via finite element methods (FEM) by using 3D meshes of the tissues. Although this type of simulation can provide a good evaluation of hip problems, the process may be very time consuming. Also, these mechanical methods strongly depend on the movement details. We proposed and tested a fast statistical model for estimating hip contact pressures during its movement, without performing mechanical simulations and without any need for movement details. The estimation is done by evaluating geometric features extracted from 3D meshes of hip tissues, in order to link an unknown target hip model to some already mechanically evaluated training hip models

    Efficient techniques for soft tissue modeling and simulation

    Get PDF
    Performing realistic deformation simulations in real time is a challenging problem in computer graphics. Among numerous proposed methods including Finite Element Modeling and ChainMail, we have implemented a mass spring system because of its acceptable accuracy and speed. Mass spring systems have, however, some drawbacks such as, the determination of simulation coefficients with their iterative nature. Given the correct parameters, mass spring systems can accurately simulate tissue deformations but choosing parameters that capture nonlinear deformation behavior is extremely difficult. Since most of the applications require a large number of elements i. e. points and springs in the modeling process it is extremely difficult to reach realtime performance with an iterative method. We have developed a new parameter identification method based on neural networks. The structure of the mass spring system is modified and neural networks are integrated into this structure. The input space consists of changes in spring lengths and velocities while a "teacher" signal is chosen as the total spring force, which is expressed in terms of positional changes and applied external forces. Neural networks are trained to learn nonlinear tissue characteristics represented by spring stiffness and damping in the mass spring algorithm. The learning algorithm is further enhanced by an adaptive learning rate, developed particularly for mass spring systems. In order to avoid the iterative approach in deformation simulations we have developed a new deformation algorithm. This algorithm defines the relationships between points and springs and specifies a set of rules on spring movements and deformations. These rules result in a deformation surface, which is called the search space. The deformation algorithm then finds the deformed points and springs in the search space with the help of the defined rules. The algorithm also sets rules on each element i. e. triangle or tetrahedron so that they do not pass through each other. The new algorithm is considerably faster than the original mass spring systems algorithm and provides an opportunity for various deformation applications. We have used mass spring systems and the developed method in the simulation of craniofacial surgery. For this purpose, a patient-specific head model was generated from MRI medical data by applying medical image processing tools such as, filtering, the segmentation and polygonal representation of such model is obtained using a surface generation algorithm. Prism volume elements are generated between the skin and bone surfaces so that different tissue layers are included to the head model. Both methods produce plausible results verified by surgeons.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A hierarchical approach with triangulated surfaces for 3D data segmentation

    Get PDF
    This article presents a new algorithm for segmenting three-dimensional images . It is based on a dynamic triangulated surface an d on a pyramidal representation . The triangulated surface, which follows a physical modelization and which can as well modify its geometry as its topology, segments images into their components by altering its shape according to internal and externa l constraints . In order to speed up the whole process, an algorithm of pyramid building with any reduction factor allows us t o transform the image into a set of images with progressive resolutions . This organization into a hierarchy, combined with a model that can adapt its mesh refinement to the resolution of the workspace, authorizes a fast estimation of the general forms included i n the image. After that, the model searches for finer and finer details while relying successively on the different levels of the pyramid.Ce travail présente un algorithme de segmentation d'images tridimensionnelles par utilisation de surfaces triangulées et de pyramides. Une triangulation de surface dynamique, dotée d'une modélisation physique et capable de changer sa topologie, va, en se déformant suivant certaines contraintes, segmenter l'image en ses constituants. Afin d'accélérer le processus, un algorithme de construction de pyramide de facteur de réduction quelconque permet de transformer l'image en un ensemble d'images de résolution progressive. Cette hiérarchisation, couplée à un modèle capable d'adapter la précision de sa maille à la résolution de son espace de travail, permet d'estimer très rapidement les formes générales contenues dans une image. Une fois ceci fait, le modèle recherche les détails de plus en plus petits en s'appuyant successivement sur les différents niveaux de la pyramide

    Implicit muscle models for interactive character skinning

    Get PDF
    En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale. Son rôle est de déformer la représentation surfacique d'un personnage pour permettre son rendu dans une succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning choisie. Sa rapidité d'exécution et sa simplicité d'utilisation sont également à prendre en compte pour rendre possible son usage interactif lors des sessions de production des artistes 3D. Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques sont rapides et simples d'utilisation, mais leur résultats manquent de plausibilité. Les approches s'appuyant sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données d'exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d'un temps de calcul souvent prohibitif pour une utilisation interactive. Les travaux décrits dans cette thèse s'appuient sur Implicit Skinning, une méthode géométrique corrective utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage interactif. La contribution principale de ces travaux est un modèle d'animation qui prend en compte les effets des muscles des personnages et de leur interactions avec d'autres éléments anatomiques, tout en bénéficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d'extrusion le long d'axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée. Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d'introduire des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter le comportement réel des muscles. Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de l'état de l'art, tout en conservant des performances suffisantes pour permettre son usage dans une session d'édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues se conforment à leur vision artistique.Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform the surface representation of a character to be rendered in the succession of poses specified by an animator. The quality and plausiblity of the displayed results directly depends on the properties of the skinning method. However, speed and simplicity are also important criteria to enable their use in interactive editing sessions. Current skinning methods can be divided in three categories. Geometric methods are fast and simple to use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require a large database of examples while remaining tedious to edit. Finally, physical simulations can model the most complex dynamical phenomena, but at a very high computational cost, making their interactive use impractical. The work presented in this thesis are based on, Implicit Skinning, is a corrective geometric approach using implicit surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for interactive use. The main contribution of this work is an animation model that adds anatomical plausibility to a character by representing muscle deformations and their interactions with other anatomical features, while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles. This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate computational cost, which enables its interactive use. In addition, it offers intuitive shape control to animators, enabling them to match the results with their artistic vision
    corecore