912 research outputs found

    Translating expert system rules into Ada code with validation and verification

    Get PDF
    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system

    Regulation with Placebo Effects

    Get PDF
    A growing scientific literature supports the existence of placebo effects from a wide range of health interventions and for a range of medical conditions. This Article reviews this literature, examines the implications for law and policy, and suggests future areas for research on placebo effects. In particular, it makes the case for altering the drug approval process to account for, if not credit, placebo effects. It recommends that evidence of placebo effects be permitted as a defense in cases alleging violations of informed consent or false advertising. Finally, it finds that tort law already has doctrines such as joint and several liability to account for placebo effects. Future research on placebo effects should focus on whether awareness of placebo effects can disable these effects and whether subjects can control their own placebo effects

    Monitoring of Wireless Sensor Networks

    Get PDF

    Performance Metrics for Network Intrusion Systems

    Get PDF
    Intrusion systems have been the subject of considerable research during the past 33 years, since the original work of Anderson. Much has been published attempting to improve their performance using advanced data processing techniques including neural nets, statistical pattern recognition and genetic algorithms. Whilst some significant improvements have been achieved they are often the result of assumptions that are difficult to justify and comparing performance between different research groups is difficult. The thesis develops a new approach to defining performance focussed on comparing intrusion systems and technologies. A new taxonomy is proposed in which the type of output and the data scale over which an intrusion system operates is used for classification. The inconsistencies and inadequacies of existing definitions of detection are examined and five new intrusion levels are proposed from analogy with other detection-based technologies. These levels are known as detection, recognition, identification, confirmation and prosecution, each representing an increase in the information output from, and functionality of, the intrusion system. These levels are contrasted over four physical data scales, from application/host through to enterprise networks, introducing and developing the concept of a footprint as a pictorial representation of the scope of an intrusion system. An intrusion is now defined as “an activity that leads to the violation of the security policy of a computer system”. Five different intrusion technologies are illustrated using the footprint with current challenges also shown to stimulate further research. Integrity in the presence of mixed trust data streams at the highest intrusion level is identified as particularly challenging. Two metrics new to intrusion systems are defined to quantify performance and further aid comparison. Sensitivity is introduced to define basic detectability of an attack in terms of a single parameter, rather than the usual four currently in use. Selectivity is used to describe the ability of an intrusion system to discriminate between attack types. These metrics are quantified experimentally for network intrusion using the DARPA 1999 dataset and SNORT. Only nine of the 58 attack types present were detected with sensitivities in excess of 12dB indicating that detection performance of the attack types present in this dataset remains a challenge. The measured selectivity was also poor indicting that only three of the attack types could be confidently distinguished. The highest value of selectivity was 3.52, significantly lower than the theoretical limit of 5.83 for the evaluated system. Options for improving selectivity and sensitivity through additional measurements are examined.Stochastic Systems Lt

    The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications

    Identification of genome wide host RNA biomarkers for infectious diseases

    Get PDF
    Existe una predisposición genética en humanos a la susceptibilidad y la gravedad de las enfermedades infecciosas. No todas las personas en contacto cercano con patógenos se infectan y desarrollan la enfermedad, en general, la mayoría de los pacientes muestran síntomas leves o moderados, y solo una minoría desarrolla una enfermedad grave. En la presente tesis nos centramos en el estudio de las firmas de expresión génica ya que el transcriptoma es un puente entre la información contenida dentro de nuestros genes y el fenotipo. Nuestros resultados suponen demuestran el potencial del uso de firmas trascriptómicas del huésped en la práctica clínica como pruebas clínicas para diagnóstico, pronóstico o evaluación de riesgos

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead

    Advanced information processing system: Input/output network management software

    Get PDF
    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture

    Analysis And Control Of Networked Systems Using Structural And Measure-Theoretic Approaches

    Get PDF
    Network control theory provides a plethora of tools to analyze the behavior of dynamical processes taking place in complex networked systems. The pattern of interconnections among components affects the global behavior of the overall system. However, the analysis of the global behavior of large scale complex networked systems offers several major challenges. First of all, analyzing or characterizing the features of large-scale networked systems generally requires full knowledge of the parameters describing the system\u27s dynamics. However, in many applications, an exact quantitative description of the parameters of the system may not be available due to measurement errors and/or modeling uncertainties. Secondly, retrieving the whole structure of many real networks is very challenging due to both computation and security constraints. Therefore, an exact analysis of the global behavior of many real-world networks is practically unfeasible. Finally, the dynamics describing the interactions between components are often stochastic, which leads to difficulty in analyzing individual behaviors in the network. In this thesis, we provide solutions to tackle all the aforementioned challenges. In the first part of the thesis, we adopt graph-theoretic approaches to address the problem caused by inexact modeling and imprecise measurements. More specifically, we leverage the connection between algebra and graph theory to analyze various properties in linear structural systems. Using these results, we then design efficient graph-theoretic algorithms to tackle topology design problems in structural systems. In the second part of the thesis, we utilize measure-theoretic techniques to characterize global properties of a network using local structural information in the form of closed walks or subgraph counts. These methods are based on recent results in real algebraic geometry that relates semidefinite programming to the multidimensional moment problem. We leverage this connection to analyze stochastic networked spreading processes and characterize safety in nonlinear dynamical systems
    corecore