92 research outputs found

    Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes with Large Girth

    Full text link
    We propose a low-complexity method to find quasi-cyclic low-density parity-check block codes with girth 10 or 12 and shorter length than those designed through classical approaches. The method is extended to time-invariant spatially coupled low-density parity-check convolutional codes, permitting to achieve small syndrome former constraint lengths. Several numerical examples are given to show its effectiveness.Comment: 4 pages, 3 figures, 1 table, accepted for publication in IEEE Communications Letter

    Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length

    Full text link
    In this paper, we deal with time-invariant spatially coupled low-density parity-check convolutional codes (SC-LDPC-CCs). Classic design approaches usually start from quasi-cyclic low-density parity-check (QC-LDPC) block codes and exploit suitable unwrapping procedures to obtain SC-LDPC-CCs. We show that the direct design of the SC-LDPC-CCs syndrome former matrix or, equivalently, the symbolic parity-check matrix, leads to codes with smaller syndrome former constraint lengths with respect to the best solutions available in the literature. We provide theoretical lower bounds on the syndrome former constraint length for the most relevant families of SC-LDPC-CCs, under constraints on the minimum length of cycles in their Tanner graphs. We also propose new code design techniques that approach or achieve such theoretical limits.Comment: 30 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Compact QC-LDPC Block and SC-LDPC Convolutional Codes for Low-Latency Communications

    Full text link
    Low decoding latency and complexity are two important requirements of channel codes used in many applications, like machine-to-machine communications. In this paper, we show how these requirements can be fulfilled by using some special quasi-cyclic low-density parity-check block codes and spatially coupled low-density parity-check convolutional codes that we denote as compact. They are defined by parity-check matrices designed according to a recent approach based on sequentially multiplied columns. This method allows obtaining codes with girth up to 12. Many numerical examples of practical codes are provided.Comment: 5 pages, 1 figure, presented at IEEE PIMRC 201

    Time-Invariant Spatially Coupled Low-Density Parity-Check Codes with Small Constraint Length

    Full text link
    We consider a special family of SC-LDPC codes, that is, time-invariant LDPCC codes, which are known in the literature for a long time. Codes of this kind are usually designed by starting from QC block codes, and applying suitable unwrapping procedures. We show that, by directly designing the LDPCC code syndrome former matrix without the constraints of the underlying QC block code, it is possible to achieve smaller constraint lengths with respect to the best solutions available in the literature. We also find theoretical lower bounds on the syndrome former constraint length for codes with a specified minimum length of the local cycles in their Tanner graphs. For this purpose, we exploit a new approach based on a numerical representation of the syndrome former matrix, which generalizes over a technique we already used to study a special subclass of the codes here considered.Comment: 5 pages, 4 figures, to be presented at IEEE BlackSeaCom 201

    Characterization and Efficient Search of Non-Elementary Trapping Sets of LDPC Codes with Applications to Stopping Sets

    Full text link
    In this paper, we propose a characterization for non-elementary trapping sets (NETSs) of low-density parity-check (LDPC) codes. The characterization is based on viewing a NETS as a hierarchy of embedded graphs starting from an ETS. The characterization corresponds to an efficient search algorithm that under certain conditions is exhaustive. As an application of the proposed characterization/search, we obtain lower and upper bounds on the stopping distance smins_{min} of LDPC codes. We examine a large number of regular and irregular LDPC codes, and demonstrate the efficiency and versatility of our technique in finding lower and upper bounds on, and in many cases the exact value of, smins_{min}. Finding smins_{min}, or establishing search-based lower or upper bounds, for many of the examined codes are out of the reach of any existing algorithm
    corecore