10,911 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Grey-box model identification via evolutionary computing

    Get PDF
    This paper presents an evolutionary grey-box model identification methodology that makes the best use of a priori knowledge on a clear-box model with a global structural representation of the physical system under study, whilst incorporating accurate blackbox models for immeasurable and local nonlinearities of a practical system. The evolutionary technique is applied to building dominant structural identification with local parametric tuning without the need of a differentiable performance index in the presence of noisy data. It is shown that the evolutionary technique provides an excellent fitting performance and is capable of accommodating multiple objectives such as to examine the relationships between model complexity and fitting accuracy during the model building process. Validation results show that the proposed method offers robust, uncluttered and accurate models for two practical systems. It is expected that this type of grey-box models will accommodate many practical engineering systems for a better modelling accuracy

    Visualization of Global Trade-Offs in Aerodynamic Problems by ARMOGAs

    Get PDF
    Trade-offs is one of important elements for engineering design problems characterized by multiple conflicting design objectives to be simultaneously improved. In many design problems such as aerodynamic design, due to computational reasons, only a limited number of evaluations can be allowed for industrial use. Efficient MOEAs, Adaptive Range Multi-Objective Genetic Algorithms (ARMOGAs), to identify trade-offs using a small number of function evaluations have been developed. In this study, ARMOGAs are applied to aerodynamic designs problems to identify trade-offs efficiently. In addition to identify trade-offs, trade-off analysis is also important to obtain useful knowledge about the design problem. To analyze the high-dimensional data of aerodynamic optimization problem, Self-Organizing Maps are applied to understand the trade-offs

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Many-objective design of reservoir systems - Applications to the Blue Nile

    Get PDF
    This work proposes a multi-criteria optimization-based approach for supporting the negotiated design of multireservoir systems. The research addresses the multi-reservoir system design problem (selecting among alternative options, reservoir sizing), the capacity expansion problem (timing the activation of new assets and the filling of new large reservoirs) and management of multi-reservoir systems at various expansion stages. The aim is to balance multiple long and short-term performance objectives of relevance to stakeholders with differing interests. The work also investigates how problem re-formulations can be used to improve computational efficiency at the design and assessment stage and proposes a framework for post-processing of many objective optimization results to facilitate negotiation among multiple stakeholders. The proposed methods are demonstrated using the Blue Nile in a suite of proof-of-concept studies. Results take the form of Pareto-optimal trade-offs where each point on the curve or surface represents the design of water resource systems (i.e., asset choice, size, implementation dates of reservoirs, and operating policy) and coordination strategies (e.g., cost sharing and power trade) where further benefits in one measure necessarily come at the expense of another. Technical chapters aim to offer practical Nile management and/or investment recommendations deriving from the analysis which could be refined in future more detailed studies

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version

    Searching for test data with feature diversity

    Full text link
    There is an implicit assumption in software testing that more diverse and varied test data is needed for effective testing and to achieve different types and levels of coverage. Generic approaches based on information theory to measure and thus, implicitly, to create diverse data have also been proposed. However, if the tester is able to identify features of the test data that are important for the particular domain or context in which the testing is being performed, the use of generic diversity measures such as this may not be sufficient nor efficient for creating test inputs that show diversity in terms of these features. Here we investigate different approaches to find data that are diverse according to a specific set of features, such as length, depth of recursion etc. Even though these features will be less general than measures based on information theory, their use may provide a tester with more direct control over the type of diversity that is present in the test data. Our experiments are carried out in the context of a general test data generation framework that can generate both numerical and highly structured data. We compare random sampling for feature-diversity to different approaches based on search and find a hill climbing search to be efficient. The experiments highlight many trade-offs that needs to be taken into account when searching for diversity. We argue that recurrent test data generation motivates building statistical models that can then help to more quickly achieve feature diversity.Comment: This version was submitted on April 14th 201

    A Multi-objective Exploratory Procedure for Regression Model Selection

    Full text link
    Variable selection is recognized as one of the most critical steps in statistical modeling. The problems encountered in engineering and social sciences are commonly characterized by over-abundance of explanatory variables, non-linearities and unknown interdependencies between the regressors. An added difficulty is that the analysts may have little or no prior knowledge on the relative importance of the variables. To provide a robust method for model selection, this paper introduces the Multi-objective Genetic Algorithm for Variable Selection (MOGA-VS) that provides the user with an optimal set of regression models for a given data-set. The algorithm considers the regression problem as a two objective task, and explores the Pareto-optimal (best subset) models by preferring those models over the other which have less number of regression coefficients and better goodness of fit. The model exploration can be performed based on in-sample or generalization error minimization. The model selection is proposed to be performed in two steps. First, we generate the frontier of Pareto-optimal regression models by eliminating the dominated models without any user intervention. Second, a decision making process is executed which allows the user to choose the most preferred model using visualisations and simple metrics. The method has been evaluated on a recently published real dataset on Communities and Crime within United States.Comment: in Journal of Computational and Graphical Statistics, Vol. 24, Iss. 1, 201
    corecore