67 research outputs found

    Families of fast elliptic curves from Q-curves

    Get PDF
    We construct new families of elliptic curves over \FF_{p^2} with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant-Lambert-Vanstone (GLV) and Galbraith-Lin-Scott (GLS) endomorphisms. Our construction is based on reducing \QQ-curves-curves over quadratic number fields without complex multiplication, but with isogenies to their Galois conjugates-modulo inert primes. As a first application of the general theory we construct, for every p>3p > 3, two one-parameter families of elliptic curves over \FF_{p^2} equipped with endomorphisms that are faster than doubling. Like GLS (which appears as a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when pp is fixed. Unlike GLS, we also offer the possibility of constructing twist-secure curves. Among our examples are prime-order curves equipped with fast endomorphisms, with almost-prime-order twists, over \FF_{p^2} for p=2127−1p = 2^{127}-1 and p=2255−19p = 2^{255}-19

    The Q-curve construction for endomorphism-accelerated elliptic curves

    Get PDF
    We give a detailed account of the use of Q\mathbb{Q}-curve reductions to construct elliptic curves over F_p2\mathbb{F}\_{p^2} with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when pp is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over F_p2\mathbb{F}\_{p^2} equipped with efficient endomorphisms for every p \textgreater{} 3, and exhibit examples of twist-secure curves over F_p2\mathbb{F}\_{p^2} for the efficient Mersenne prime p=2127−1p = 2^{127}-1.Comment: To appear in the Journal of Cryptology. arXiv admin note: text overlap with arXiv:1305.540

    Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians

    Get PDF
    The first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms-including Gallant-Lambert-Vanstone (GLV) and Galbraith-Lin-Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions-is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting scalar multiplication. Typically, knowledge of the eigenvalues allows us to write down a long basis, which we then reduce using the Euclidean algorithm, Gauss reduction, LLL, or even a more specialized algorithm. In this work, we use elementary facts about quadratic rings to immediately write down a short basis of the lattice for the GLV, GLS, GLV+GLS, and Q-curve constructions on elliptic curves, and for genus 2 real multiplication constructions. We do not pretend that this represents a significant optimization in scalar multiplication, since the lattice reduction step is always an offline precomputation---but it does give a better insight into the structure of scalar decompositions. In any case, it is always more convenient to use a ready-made short basis than it is to compute a new one

    The geometry of efficient arithmetic on elliptic curves

    Full text link
    The arithmetic of elliptic curves, namely polynomial addition and scalar multiplication, can be described in terms of global sections of line bundles on E×EE\times E and EE, respectively, with respect to a given projective embedding of EE in Pr\mathbb{P}^r. By means of a study of the finite dimensional vector spaces of global sections, we reduce the problem of constructing and finding efficiently computable polynomial maps defining the addition morphism or isogenies to linear algebra. We demonstrate the effectiveness of the method by improving the best known complexity for doubling and tripling, by considering families of elliptic curves admiting a 22-torsion or 33-torsion point

    Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians

    Get PDF
    International audienceThe first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms---including Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions---is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting scalar multiplication. Typically, knowledge of the eigenvalues allows us to write down a long basis, which we then reduce using the Euclidean algorithm, Gauss reduction, LLL, or even a more specialized algorithm. In this work, we use elementary facts about quadratic rings to immediately write down a short basis of the lattice for the GLV, GLS, GLV+GLS, and Q-curve constructions on elliptic curves, and for genus 2 real multiplication constructions. We do not pretend that this represents a significant optimization in scalar multiplication, since the lattice reduction step is always an offline precomputation---but it does give a better insight into the structure of scalar decompositions. In any case, it is always more convenient to use a ready-made short basis than it is to compute a new one

    Computing cardinalities of Q-curve reductions over finite fields

    Get PDF
    We present a specialized point-counting algorithm for a class of elliptic curves over F\_{p^2} that includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic curve over F\_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof--Elkies--Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.Comment: To appear in the proceedings of ANTS-XII. Added acknowledgement of Drew Sutherlan

    FourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime

    Get PDF
    We introduce FourQ, a high-security, high-performance elliptic curve that targets the 128-bit security level. At the highest arithmetic level, cryptographic scalar multiplications on FourQ can use a four-dimensional Gallant-Lambert-Vanstone decomposition to minimize the total number of elliptic curve group operations. At the group arithmetic level, FourQ admits the use of extended twisted Edwards coordinates and can therefore exploit the fastest known elliptic curve addition formulas over large prime characteristic fields. Finally, at the finite field level, arithmetic is performed modulo the extremely fast Mersenne prime p=2127−1p=2^{127}-1. We show that this powerful combination facilitates scalar multiplications that are significantly faster than all prior works. On Intel\u27s Broadwell, Haswell, Ivy Bridge and Sandy Bridge architectures, our software computes a variable-base scalar multiplication in 50,000, 56,000, 69,000 cycles and 72,000 cycles, respectively; and, on the same platforms, our software computes a Diffie-Hellman shared secret in 80,000, 88,000, 104,000 cycles and 112,000 cycles, respectively. These results show that, in practice, FourQ is around four to five times faster than the original NIST P-256 curve and between two and three times faster than curves that are currently under consideration as NIST alternatives, such as Curve25519

    Fast and Frobenius: Rational Isogeny Evaluation over Finite Fields

    Full text link
    Consider the problem of efficiently evaluating isogenies ϕ:E→E/H\phi: E \to E/H of elliptic curves over a finite field Fq\mathbb{F}_q, where the kernel H=⟨G⟩H = \langle G\rangle is a cyclic group of odd (prime) order: given EE, GG, and a point (or several points) PP on EE, we want to compute ϕ(P)\phi(P). This problem is at the heart of efficient implementations of group-action- and isogeny-based post-quantum cryptosystems such as CSIDH. Algorithms based on V{\'e}lu's formulae give an efficient solution to this problem when the kernel generator GG is defined over Fq\mathbb{F}_q. However, for general isogenies, GG is only defined over some extension Fqk\mathbb{F}_{q^k}, even though ⟨G⟩\langle G\rangle as a whole (and thus ϕ\phi) is defined over the base field Fq\mathbb{F}_q; and the performance of V{\'e}lu-style algorithms degrades rapidly as kk grows. In this article we revisit the isogeny-evaluation problem with a special focus on the case where 1≤k≤121 \le k \le 12. We improve V{\'e}lu-style isogeny evaluation for many cases where k=1k = 1 using special addition chains, and combine this with the action of Galois to give greater improvements when k>1k > 1

    Fast algorithms for computing isogenies between elliptic curves

    Get PDF
    We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ℓ\ell (ℓ\ell different from the characteristic) in time quasi-linear with respect to ℓ\ell. This is based in particular on fast algorithms for power series expansion of the Weierstrass ℘\wp-function and related functions
    • …
    corecore