48,326 research outputs found

    Data-efficient Neuroevolution with Kernel-Based Surrogate Models

    Get PDF
    Surrogate-assistance approaches have long been used in computationally expensive domains to improve the data-efficiency of optimization algorithms. Neuroevolution, however, has so far resisted the application of these techniques because it requires the surrogate model to make fitness predictions based on variable topologies, instead of a vector of parameters. Our main insight is that we can sidestep this problem by using kernel-based surrogate models, which require only the definition of a distance measure between individuals. Our second insight is that the well-established Neuroevolution of Augmenting Topologies (NEAT) algorithm provides a computationally efficient distance measure between dissimilar networks in the form of "compatibility distance", initially designed to maintain topological diversity. Combining these two ideas, we introduce a surrogate-assisted neuroevolution algorithm that combines NEAT and a surrogate model built using a compatibility distance kernel. We demonstrate the data-efficiency of this new algorithm on the low dimensional cart-pole swing-up problem, as well as the higher dimensional half-cheetah running task. In both tasks the surrogate-assisted variant achieves the same or better results with several times fewer function evaluations as the original NEAT.Comment: In GECCO 201

    New Insights into History Matching via Sequential Monte Carlo

    Get PDF
    The aim of the history matching method is to locate non-implausible regions of the parameter space of complex deterministic or stochastic models by matching model outputs with data. It does this via a series of waves where at each wave an emulator is fitted to a small number of training samples. An implausibility measure is defined which takes into account the closeness of simulated and observed outputs as well as emulator uncertainty. As the waves progress, the emulator becomes more accurate so that training samples are more concentrated on promising regions of the space and poorer parts of the space are rejected with more confidence. Whilst history matching has proved to be useful, existing implementations are not fully automated and some ad-hoc choices are made during the process, which involves user intervention and is time consuming. This occurs especially when the non-implausible region becomes small and it is difficult to sample this space uniformly to generate new training points. In this article we develop a sequential Monte Carlo (SMC) algorithm for implementation which is semi-automated. Our novel SMC approach reveals that the history matching method yields a non-implausible distribution that can be multi-modal, highly irregular and very difficult to sample uniformly. Our SMC approach offers a much more reliable sampling of the non-implausible space, which requires additional computation compared to other approaches used in the literature

    Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families

    Get PDF
    We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where classical HMC is not an option due to intractable gradients, KMC adaptively learns the target's gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing improvements over state-of-the-art gradient free samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.Comment: 20 pages, 7 figure

    Sampling-based speech parameter generation using moment-matching networks

    Full text link
    This paper presents sampling-based speech parameter generation using moment-matching networks for Deep Neural Network (DNN)-based speech synthesis. Although people never produce exactly the same speech even if we try to express the same linguistic and para-linguistic information, typical statistical speech synthesis produces completely the same speech, i.e., there is no inter-utterance variation in synthetic speech. To give synthetic speech natural inter-utterance variation, this paper builds DNN acoustic models that make it possible to randomly sample speech parameters. The DNNs are trained so that they make the moments of generated speech parameters close to those of natural speech parameters. Since the variation of speech parameters is compressed into a low-dimensional simple prior noise vector, our algorithm has lower computation cost than direct sampling of speech parameters. As the first step towards generating synthetic speech that has natural inter-utterance variation, this paper investigates whether or not the proposed sampling-based generation deteriorates synthetic speech quality. In evaluation, we compare speech quality of conventional maximum likelihood-based generation and proposed sampling-based generation. The result demonstrates the proposed generation causes no degradation in speech quality.Comment: Submitted to INTERSPEECH 201

    Discriminative Density-ratio Estimation

    Full text link
    The covariate shift is a challenging problem in supervised learning that results from the discrepancy between the training and test distributions. An effective approach which recently drew a considerable attention in the research community is to reweight the training samples to minimize that discrepancy. In specific, many methods are based on developing Density-ratio (DR) estimation techniques that apply to both regression and classification problems. Although these methods work well for regression problems, their performance on classification problems is not satisfactory. This is due to a key observation that these methods focus on matching the sample marginal distributions without paying attention to preserving the separation between classes in the reweighted space. In this paper, we propose a novel method for Discriminative Density-ratio (DDR) estimation that addresses the aforementioned problem and aims at estimating the density-ratio of joint distributions in a class-wise manner. The proposed algorithm is an iterative procedure that alternates between estimating the class information for the test data and estimating new density ratio for each class. To incorporate the estimated class information of the test data, a soft matching technique is proposed. In addition, we employ an effective criterion which adopts mutual information as an indicator to stop the iterative procedure while resulting in a decision boundary that lies in a sparse region. Experiments on synthetic and benchmark datasets demonstrate the superiority of the proposed method in terms of both accuracy and robustness

    Run Time Approximation of Non-blocking Service Rates for Streaming Systems

    Full text link
    Stream processing is a compute paradigm that promises safe and efficient parallelism. Modern big-data problems are often well suited for stream processing's throughput-oriented nature. Realization of efficient stream processing requires monitoring and optimization of multiple communications links. Most techniques to optimize these links use queueing network models or network flow models, which require some idea of the actual execution rate of each independent compute kernel within the system. What we want to know is how fast can each kernel process data independent of other communicating kernels. This is known as the "service rate" of the kernel within the queueing literature. Current approaches to divining service rates are static. Modern workloads, however, are often dynamic. Shared cloud systems also present applications with highly dynamic execution environments (multiple users, hardware migration, etc.). It is therefore desirable to continuously re-tune an application during run time (online) in response to changing conditions. Our approach enables online service rate monitoring under most conditions, obviating the need for reliance on steady state predictions for what are probably non-steady state phenomena. First, some of the difficulties associated with online service rate determination are examined. Second, the algorithm to approximate the online non-blocking service rate is described. Lastly, the algorithm is implemented within the open source RaftLib framework for validation using a simple microbenchmark as well as two full streaming applications.Comment: technical repor
    corecore