12,990 research outputs found

    Efficient Simulation and Conditional Functional Limit Theorems for Ruinous Heavy-tailed Random Walks

    Full text link
    The contribution of this paper is to introduce change of measure based techniques for the rare-event analysis of heavy-tailed stochastic processes. Our changes-of-measure are parameterized by a family of distributions admitting a mixture form. We exploit our methodology to achieve two types of results. First, we construct Monte Carlo estimators that are strongly efficient (i.e. have bounded relative mean squared error as the event of interest becomes rare). These estimators are used to estimate both rare-event probabilities of interest and associated conditional expectations. We emphasize that our techniques allow us to control the expected termination time of the Monte Carlo algorithm even if the conditional expected stopping time (under the original distribution) given the event of interest is infinity -- a situation that sometimes occurs in heavy-tailed settings. Second, the mixture family serves as a good approximation (in total variation) of the conditional distribution of the whole process given the rare event of interest. The convenient form of the mixture family allows us to obtain, as a corollary, functional conditional central limit theorems that extend classical results in the literature. We illustrate our methodology in the context of the ruin probability P(supnSn>b)P(\sup_n S_n >b), where SnS_n is a random walk with heavy-tailed increments that have negative drift. Our techniques are based on the use of Lyapunov inequalities for variance control and termination time. The conditional limit theorems combine the application of Lyapunov bounds with coupling arguments

    Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors

    Full text link
    Sparsity has become a key concept for solving of high-dimensional inverse problems using variational regularization techniques. Recently, using similar sparsity-constraints in the Bayesian framework for inverse problems by encoding them in the prior distribution has attracted attention. Important questions about the relation between regularization theory and Bayesian inference still need to be addressed when using sparsity promoting inversion. A practical obstacle for these examinations is the lack of fast posterior sampling algorithms for sparse, high-dimensional Bayesian inversion: Accessing the full range of Bayesian inference methods requires being able to draw samples from the posterior probability distribution in a fast and efficient way. This is usually done using Markov chain Monte Carlo (MCMC) sampling algorithms. In this article, we develop and examine a new implementation of a single component Gibbs MCMC sampler for sparse priors relying on L1-norms. We demonstrate that the efficiency of our Gibbs sampler increases when the level of sparsity or the dimension of the unknowns is increased. This property is contrary to the properties of the most commonly applied Metropolis-Hastings (MH) sampling schemes: We demonstrate that the efficiency of MH schemes for L1-type priors dramatically decreases when the level of sparsity or the dimension of the unknowns is increased. Practically, Bayesian inversion for L1-type priors using MH samplers is not feasible at all. As this is commonly believed to be an intrinsic feature of MCMC sampling, the performance of our Gibbs sampler also challenges common beliefs about the applicability of sample based Bayesian inference.Comment: 33 pages, 14 figure

    Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian Filtering in High-dimensional Spaces

    Full text link
    Nonlinear non-Gaussian state-space models arise in numerous applications in statistics and signal processing. In this context, one of the most successful and popular approximation techniques is the Sequential Monte Carlo (SMC) algorithm, also known as particle filtering. Nevertheless, this method tends to be inefficient when applied to high dimensional problems. In this paper, we focus on another class of sequential inference methods, namely the Sequential Markov Chain Monte Carlo (SMCMC) techniques, which represent a promising alternative to SMC methods. After providing a unifying framework for the class of SMCMC approaches, we propose novel efficient strategies based on the principle of Langevin diffusion and Hamiltonian dynamics in order to cope with the increasing number of high-dimensional applications. Simulation results show that the proposed algorithms achieve significantly better performance compared to existing algorithms

    Approximately Sampling Elements with Fixed Rank in Graded Posets

    Full text link
    Graded posets frequently arise throughout combinatorics, where it is natural to try to count the number of elements of a fixed rank. These counting problems are often #P\#\textbf{P}-complete, so we consider approximation algorithms for counting and uniform sampling. We show that for certain classes of posets, biased Markov chains that walk along edges of their Hasse diagrams allow us to approximately generate samples with any fixed rank in expected polynomial time. Our arguments do not rely on the typical proofs of log-concavity, which are used to construct a stationary distribution with a specific mode in order to give a lower bound on the probability of outputting an element of the desired rank. Instead, we infer this directly from bounds on the mixing time of the chains through a method we call balanced bias\textit{balanced bias}. A noteworthy application of our method is sampling restricted classes of integer partitions of nn. We give the first provably efficient Markov chain algorithm to uniformly sample integer partitions of nn from general restricted classes. Several observations allow us to improve the efficiency of this chain to require O(n1/2log(n))O(n^{1/2}\log(n)) space, and for unrestricted integer partitions, expected O(n9/4)O(n^{9/4}) time. Related applications include sampling permutations with a fixed number of inversions and lozenge tilings on the triangular lattice with a fixed average height.Comment: 23 pages, 12 figure
    corecore