20,019 research outputs found

    "Virus hunting" using radial distance weighted discrimination

    Get PDF
    Motivated by the challenge of using DNA-seq data to identify viruses in human blood samples, we propose a novel classification algorithm called "Radial Distance Weighted Discrimination" (or Radial DWD). This classifier is designed for binary classification, assuming one class is surrounded by the other class in very diverse radial directions, which is seen to be typical for our virus detection data. This separation of the 2 classes in multiple radial directions naturally motivates the development of Radial DWD. While classical machine learning methods such as the Support Vector Machine and linear Distance Weighted Discrimination can sometimes give reasonable answers for a given data set, their generalizability is severely compromised because of the linear separating boundary. Radial DWD addresses this challenge by using a more appropriate (in this particular case) spherical separating boundary. Simulations show that for appropriate radial contexts, this gives much better generalizability than linear methods, and also much better than conventional kernel based (nonlinear) Support Vector Machines, because the latter methods essentially use much of the information in the data for determining the shape of the separating boundary. The effectiveness of Radial DWD is demonstrated for real virus detection.Comment: Published at http://dx.doi.org/10.1214/15-AOAS869 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Feature and Region Selection for Visual Learning

    Full text link
    Visual learning problems such as object classification and action recognition are typically approached using extensions of the popular bag-of-words (BoW) model. Despite its great success, it is unclear what visual features the BoW model is learning: Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: (1) Our approach accommodates non-linear additive kernels such as the popular χ2\chi^2 and intersection kernel; (2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; (3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; (4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach
    • …
    corecore