36 research outputs found

    Efficient SDP Inference for Fully-connected CRFs Based on Low-rank Decomposition

    Full text link
    Conditional Random Fields (CRF) have been widely used in a variety of computer vision tasks. Conventional CRFs typically define edges on neighboring image pixels, resulting in a sparse graph such that efficient inference can be performed. However, these CRFs fail to model long-range contextual relationships. Fully-connected CRFs have thus been proposed. While there are efficient approximate inference methods for such CRFs, usually they are sensitive to initialization and make strong assumptions. In this work, we develop an efficient, yet general algorithm for inference on fully-connected CRFs. The algorithm is based on a scalable SDP algorithm and the low- rank approximation of the similarity/kernel matrix. The core of the proposed algorithm is a tailored quasi-Newton method that takes advantage of the low-rank matrix approximation when solving the specialized SDP dual problem. Experiments demonstrate that our method can be applied on fully-connected CRFs that cannot be solved previously, such as pixel-level image co-segmentation.Comment: 15 pages. A conference version of this work appears in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 201

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    Efficient Relaxations for Dense CRFs with Sparse Higher Order Potentials

    Full text link
    Dense conditional random fields (CRFs) have become a popular framework for modelling several problems in computer vision such as stereo correspondence and multi-class semantic segmentation. By modelling long-range interactions, dense CRFs provide a labelling that captures finer detail than their sparse counterparts. Currently, the state-of-the-art algorithm performs mean-field inference using a filter-based method but fails to provide a strong theoretical guarantee on the quality of the solution. A question naturally arises as to whether it is possible to obtain a maximum a posteriori (MAP) estimate of a dense CRF using a principled method. Within this paper, we show that this is indeed possible. We will show that, by using a filter-based method, continuous relaxations of the MAP problem can be optimised efficiently using state-of-the-art algorithms. Specifically, we will solve a quadratic programming (QP) relaxation using the Frank-Wolfe algorithm and a linear programming (LP) relaxation by developing a proximal minimisation framework. By exploiting labelling consistency in the higher-order potentials and utilising the filter-based method, we are able to formulate the above algorithms such that each iteration has a complexity linear in the number of classes and random variables. The presented algorithms can be applied to any labelling problem using a dense CRF with sparse higher-order potentials. In this paper, we use semantic segmentation as an example application as it demonstrates the ability of the algorithm to scale to dense CRFs with large dimensions. We perform experiments on the Pascal dataset to indicate that the presented algorithms are able to attain lower energies than the mean-field inference method

    Efficient Linear Programming for Dense CRFs

    Get PDF
    The fully connected conditional random field (CRF) with Gaussian pairwise potentials has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a linear programming (LP) relaxation, the state-of-the-art algorithm is too slow to be useful in practice. To alleviate this deficiency, we introduce an efficient LP minimization algorithm for dense CRFs. To this end, we develop a proximal minimization framework, where the dual of each proximal problem is optimized via block coordinate descent. We show that each block of variables can be efficiently optimized. Specifically, for one block, the problem decomposes into significantly smaller subproblems, each of which is defined over a single pixel. For the other block, the problem is optimized via conditional gradient descent. This has two advantages: 1) the conditional gradient can be computed in a time linear in the number of pixels and labels; and 2) the optimal step size can be computed analytically. Our experiments on standard datasets provide compelling evidence that our approach outperforms all existing baselines including the previous LP based approach for dense CRFs.Comment: 24 pages, 10 figures and 4 table

    Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs

    Full text link
    This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation

    OPTIMIZATION ALGORITHMS USING PRIORS IN COMPUTER VISION

    Get PDF
    Over the years, many computer vision models, some inspired by human behavior, have been developed for various applications. However, only handful of them are popular and widely used. Why? There are two major factors: 1) most of these models do not have any efficient numerical algorithm and hence they are computationally very expensive; 2) many models, being too generic, cannot capitalize on problem specific prior information and thus demand rigorous hyper-parameter tuning. In this dissertation, we design fast and efficient algorithms to leverage application specific priors to solve unsupervised and weakly-supervised problems. Specifically, we focus on developing algorithms to impose structured priors, model priors and label priors during the inference and/or learning of vision models. In many application, it is known a priori that a signal is smooth and continuous in space. The first part of this work is focussed on improving unsupervised learning mechanisms by explicitly imposing these structured priors in an optimization framework using different regularization schemes. This led to the development of fast algorithms for robust recovery of signals from compressed measurements, image denoising and data clustering. Moreover, by employing re-descending robust penalty on the structured regularization terms and applying duality, we reduce our clustering formulation to an optimization of a single continuous objective. This enabled integration of clustering processes in an end-to-end feature learning pipeline. In the second part of our work, we exploit inherent properties of established models to develop efficient solvers for SDP, GAN, and semantic segmentation. We consider models for several different problem classes. a) Certain non-convex models in computer vision (e.g., BQP) are popularly solved using convex SDPs after lifting to a high-dimensional space. However, this computationally expensive approach limits these methods to small matrices. A fast and approximate algorithm is developed that directly solves the original non-convex formulation using biconvex relaxations and known rank information. b) Widely popular adversarial networks are difficult to train as they suffer from instability issues. This is because optimizing adversarial networks corresponds to finding a saddle-point of a loss function. We propose a simple prediction method that enables faster training of various adversarial networks using larger learning rates without any instability problems. c) Semantic segmentation models must learn long-distance contextual information while retaining high spatial resolution at the output. Existing models achieves this at the cost of computationally expensive and memory exhaustive training/inference. We designed stacked u-nets model which can repeatedly process top-down and bottom-up features. Our smallest model exceeds Resnet-101 performance on PASCAL VOC 2012 by 4.5% IoU with ∼ 7× fewer parameters. Next, we address the problem of learning heterogeneous concepts from internet videos using mined label tags. Given a large number of videos each with multiple concepts and labels, the idea is to teach machines to automatically learn these concepts by leveraging weak labels. We formulate this into a co-clustering problem and developed a novel bayesian non-parametric weakly supervised Indian buffet process model which additionally enforces the paired label prior between concepts. In the final part of this work we consider an inverse approach: learning data priors from a given model. Specifically, we develop numerically efficient algorithm for estimating the log likelihood of data samples from GANs. The approximate log-likelihood function is used for outlier detection and data augmentation for training classifiers

    Optimization of Markov Random Fields in Computer Vision

    No full text
    A large variety of computer vision tasks can be formulated using Markov Random Fields (MRF). Except in certain special cases, optimizing an MRF is intractable, due to a large number of variables and complex dependencies between them. In this thesis, we present new algorithms to perform inference in MRFs, that are either more efficient (in terms of running time and/or memory usage) or more effective (in terms of solution quality), than the state-of-the-art methods. First, we introduce a memory efficient max-flow algorithm for multi-label submodular MRFs. In fact, such MRFs have been shown to be optimally solvable using max-flow based on an encoding of the labels proposed by Ishikawa, in which each variable XiX_i is represented by ℓ\ell nodes (where ℓ\ell is the number of labels) arranged in a column. However, this method in general requires 2 ℓ22\,\ell^2 edges for each pair of neighbouring variables. This makes it inapplicable to realistic problems with many variables and labels, due to excessive memory requirement. By contrast, our max-flow algorithm stores 2 ℓ2\,\ell values per variable pair, requiring much less storage. Consequently, our algorithm makes it possible to optimally solve multi-label submodular problems involving large numbers of variables and labels on a standard computer. Next, we present a move-making style algorithm for multi-label MRFs with robust non-convex priors. In particular, our algorithm iteratively approximates the original MRF energy with an appropriately weighted surrogate energy that is easier to minimize. Furthermore, it guarantees that the original energy decreases at each iteration. To this end, we consider the scenario where the weighted surrogate energy is multi-label submodular (i.e., it can be optimally minimized by max-flow), and show that our algorithm then lets us handle of a large variety of non-convex priors. Finally, we consider the fully connected Conditional Random Field (dense CRF) with Gaussian pairwise potentials that has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a Linear Programming (LP) relaxation, the state-of-the-art algorithm is too slow to be useful in practice. To alleviate this deficiency, we introduce an efficient LP minimization algorithm for dense CRFs. To this end, we develop a proximal minimization framework, where the dual of each proximal problem is optimized via block-coordinate descent. We show that each block of variables can be optimized in a time linear in the number of pixels and labels. Consequently, our algorithm enables efficient and effective optimization of dense CRFs with Gaussian pairwise potentials. We evaluated all our algorithms on standard energy minimization datasets consisting of computer vision problems, such as stereo, inpainting and semantic segmentation. The experiments at the end of each chapter provide compelling evidence that all our approaches are either more efficient or more effective than all existing baselines
    corecore