494 research outputs found

    CONJURE: automatic generation of constraint models from problem specifications

    Get PDF
    Funding: Engineering and Physical Sciences Research Council (EP/V027182/1, EP/P015638/1), Royal Society (URF/R/180015).When solving a combinatorial problem, the formulation or model of the problem is critical tothe efficiency of the solver. Automating the modelling process has long been of interest because of the expertise and time required to produce an effective model of a given problem. We describe a method to automatically produce constraint models from a problem specification written in the abstract constraint specification language Essence. Our approach is to incrementally refine the specification into a concrete model by applying a chosen refinement rule at each step. Any nontrivial specification may be refined in multiple ways, creating a space of models to choose from. The handling of symmetries is a particularly important aspect of automated modelling. Many combinatorial optimisation problems contain symmetry, which can lead to redundant search. If a partial assignment is shown to be invalid, we are wasting time if we ever consider a symmetric equivalent of it. A particularly important class of symmetries are those introduced by the constraint modelling process: modelling symmetries. We show how modelling symmetries may be broken automatically as they enter a model during refinement, obviating the need for an expensive symmetry detection step following model formulation. Our approach is implemented in a system called Conjure. We compare the models producedby Conjure to constraint models from the literature that are known to be effective. Our empirical results confirm that Conjure can reproduce successfully the kernels of the constraint models of 42 benchmark problems found in the literature.Publisher PDFPeer reviewe

    Analysis of Feature Models Using Alloy: A Survey

    Full text link
    Feature Models (FMs) are a mechanism to model variability among a family of closely related software products, i.e. a software product line (SPL). Analysis of FMs using formal methods can reveal defects in the specification such as inconsistencies that cause the product line to have no valid products. A popular framework used in research for FM analysis is Alloy, a light-weight formal modeling notation equipped with an efficient model finder. Several works in the literature have proposed different strategies to encode and analyze FMs using Alloy. However, there is little discussion on the relative merits of each proposal, making it difficult to select the most suitable encoding for a specific analysis need. In this paper, we describe and compare those strategies according to various criteria such as the expressivity of the FM notation or the efficiency of the analysis. This survey is the first comparative study of research targeted towards using Alloy for FM analysis. This review aims to identify all the best practices on the use of Alloy, as a part of a framework for the automated extraction and analysis of rich FMs from natural language requirement specifications.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    Pseudo-Boolean Constraint Encodings for Conjunctive Normal Form and their Applications

    Get PDF
    In contrast to a single clause a pseudo-Boolean (PB) constraint is much more expressive and hence it is easier to define problems with the help of PB constraints. But while PB constraints provide us with a high-level problem description, it has been shown that solving PB constraints can be done faster with the help of a SAT solver. To apply such a solver to a PB constraint we have to encode it with clauses into conjunctive normal form (CNF). While we can find a basic encoding into CNF which is equivalent to a given PB constraint, the solving time of a SAT solver significantly depends on different properties of an encoding, e.g. the number of clauses or if generalized arc consistency (GAC) is maintained during the search for a solution. There are various PB encodings that try to optimize or balance these properties. This thesis is about such encodings. For a better understanding of the research field an overview about the state-of-the art encodings is given. The focus of the overview is a simple but complete description of each encoding, such that any reader could use, implement and extent them in his own work. In addition two novel encodings are presented: The Sequential Weight Counter (SWC) encoding and the Binary Merger Encoding. While the SWC encoding provides a very simple structure – it is listed in four lines – empirical evaluation showed its practical usefulness in various applications. The Binary Merger encoding reduces the number of clauses a PB encoding needs while having the important GAC property. To the best of our knowledge currently no other encoding has a lower upper bound for the number of clauses produced by a PB encoding with this property. This is an important improvement of the state-of-the art, since both GAC and a low number of clauses are vital for an improved solving time of the SAT solver. The thesis also contributes to the development of new applications for PB constraint encodings. The programming library PBLib provides researchers with an open source implementation of almost all PB encodings – including the encodings for the special cases at-most-one and cardinality constraints. The PBLib is also the foundation of the presented weighted MaxSAT solver optimax, the PBO solver pbsolver and the WBO, PBO and weighted MaxSAT solver npSolver

    Improved Answer-Set Programming Encodings for Abstract Argumentation

    Full text link
    The design of efficient solutions for abstract argumentation problems is a crucial step towards advanced argumentation systems. One of the most prominent approaches in the literature is to use Answer-Set Programming (ASP) for this endeavor. In this paper, we present new encodings for three prominent argumentation semantics using the concept of conditional literals in disjunctions as provided by the ASP-system clingo. Our new encodings are not only more succinct than previous versions, but also outperform them on standard benchmarks.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201
    • …
    corecore