178 research outputs found

    Computing fast search heuristics for physics-based mobile robot motion planning

    Get PDF
    Mobile robots are increasingly being employed to assist responders in search and rescue missions. Robots have to navigate in dangerous areas such as collapsed buildings and hazardous sites, which can be inaccessible to humans. Tele-operating the robots can be stressing for the human operators, which are also overloaded with mission tasks and coordination overhead, so it is important to provide the robot with some degree of autonomy, to lighten up the task for the human operator and also to ensure robot safety. Moving robots around requires reasoning, including interpretation of the environment, spatial reasoning, planning of actions (motion), and execution. This is particularly challenging when the environment is unstructured, and the terrain is \textit{harsh}, i.e. not flat and cluttered with obstacles. Approaches reducing the problem to a 2D path planning problem fall short, and many of those who reason about the problem in 3D don't do it in a complete and exhaustive manner. The approach proposed in this thesis is to use rigid body simulation to obtain a more truthful model of the reality, i.e. of the interaction between the robot and the environment. Such a simulation obeys the laws of physics, takes into account the geometry of the environment, the geometry of the robot, and any dynamic constraints that may be in place. The physics-based motion planning approach by itself is also highly intractable due to the computational load required to perform state propagation combined with the exponential blowup of planning; additionally, there are more technical limitations that disallow us to use things such as state sampling or state steering, which are known to be effective in solving the problem in simpler domains. The proposed solution to this problem is to compute heuristics that can bias the search towards the goal, so as to quickly converge towards the solution. With such a model, the search space is a rich space, which can only contain states which are physically reachable by the robot, and also tells us enough information about the safety of the robot itself. The overall result is that by using this framework the robot engineer has a simpler job of encoding the \textit{domain knowledge} which now consists only of providing the robot geometric model plus any constraints

    An Approach for Multi-Robot Opportunistic Coexistence in Shared Space

    Get PDF
    This thesis considers a situation in which multiple robots operate in the same environment towards the achievement of different tasks. In this situation, please consider that not only the tasks, but also the robots themselves are likely be heterogeneous, i.e., different from each other in their morphology, dynamics, sensors, capabilities, etc. As an example, think about a "smart hotel": small wheeled robots are likely to be devoted to cleaning floors, whereas a humanoid robot may be devoted to social interaction, e.g., welcoming guests and providing relevant information to them upon request. Under these conditions, robots are required not only to co-exist, but also to coordinate their activity if we want them to exhibit a coherent and effective behavior: this may range from mutual avoidance to avoid collisions, to a more explicit coordinated behavior, e.g., task assignment or cooperative localization. The issues above have been deeply investigated in the Literature. Among the topics that may play a crucial role to design a successful system, this thesis focuses on the following ones: (i) An integrated approach for path following and obstacle avoidance is applied to unicycle type robots, by extending an existing algorithm [1] initially developed for the single robot case to the multi-robot domain. The approach is based on the definition of the path to be followed as a curve f (x;y) in space, while obstacles are modeled as Gaussian functions that modify the original function, generating a resulting safe path. The attractiveness of this methodology which makes it look very simple, is that it neither requires the computation of a projection of the robot position on the path, nor does it need to consider a moving virtual target to be tracked. The performance of the proposed approach is analyzed by means of a series of experiments performed in dynamic environments with unicycle-type robots by integrating and determining the position of robot using odometry and in Motion capturing environment. (ii) We investigate the problem of multi-robot cooperative localization in dynamic environments. Specifically, we propose an approach where wheeled robots are localized using the monocular camera embedded in the head of a Pepper humanoid robot, to the end of minimizing deviations from their paths and avoiding each other during navigation tasks. Indeed, position estimation requires obtaining a linear relationship between points in the image and points in the world frame: to this end, an Inverse Perspective mapping (IPM) approach has been adopted to transform the acquired image into a bird eye view of the environment. The scenario is made more complex by the fact that Pepper\u2019s head is moving dynamically while tracking the wheeled robots, which requires to consider a different IPM transformation matrix whenever the attitude (Pitch and Yaw) of the camera changes. Finally, the IPM position estimate returned by Pepper is merged with the estimate returned by the odometry of the wheeled robots through an Extened Kalman Filter. Experiments are shown with multiple robots moving along different paths in a shared space, by avoiding each other without onboard sensors, i.e., by relying only on mutual positioning information. Software for implementing the theoretical models described above have been developed in ROS, and validated by performing real experiments with two types of robots, namely: (i) a unicycle wheeled Roomba robot(commercially available all over the world), (ii) Pepper Humanoid robot (commercially available in Japan and B2B model in Europe)

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)

    Navigation Techniques for Control of Multiple Mobile Robots

    Get PDF
    The investigation reported in this thesis attempt to develop efficient techniques for the control of multiple mobile robots in an unknown environment. Mobile robots are key components in industrial automation, service provision, and unmanned space exploration. This thesis addresses eight different techniques for the navigation of multiple mobile robots. These are fuzzy logic, neural network, neuro-fuzzy, rule-base, rule-based-neuro-fuzzy, potential field, potential-field-neuro-fuzzy, and simulated-annealing- potential-field- neuro-fuzzy techniques. The main components of this thesis comprises of eight chapters. Following the literature survey in Chapter-2, Chapter-3 describes how to calculate the heading angle for the mobile robots in terms of left wheel velocity and right wheel velocity of the robot. In Chapter-4 a fuzzy logic technique has been analysed. The fuzzy logic technique uses different membership functions for navigation of the multiple mobile robots, which can perform obs..

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Visual Odometry and Traversability Analysis for Wheeled Robots in Complex Environments

    Get PDF
    Durch die technische Entwicklung im Bereich der radbasierten mobilen Roboter (WMRs) erweitern sich deren Anwendungsszenarien. Neben den eher strukturierten industriellen und häuslichen Umgebungen sind nun komplexere städtische Szenarien oder Außenbereiche mögliche Einsatzgebiete. Einer dieser neuen Anwendungsfälle wird in dieser Arbeit beschrieben: ein intelligenter persönlicher Mobilitätsassistent, basierend auf einem elektrischen Rollator. Ein solches System hat mehrere Anforderungen: Es muss sicher, robust, leicht und preiswert sein und sollte in der Lage sein, in Echtzeit zu navigieren, um eine direkte physische Interaktion mit dem Benutzer zu ermöglichen. Da diese Eigenschaften für fast alle Arten von WMRs wünschenswert sind, können alle in dieser Arbeit präsentierten Methoden auch mit anderen Typen von WMRs verwendet werden. Zuerst wird eine visuelle Odometriemethode vorgestellt, welche auf die Arbeit mit einer nach unten gerichteten RGB-D-Kamera ausgelegt ist. Hierzu wird die Umgebung auf die Bodenebene projiziert, um eine 2-dimensionale Repräsentation zu erhalten. Nun wird ein effizientes Bildausrichtungsverfahren verwendet, um die Fahrzeugbewegung aus aufeinander folgenden Bildern zu schätzen. Da das Verfahren für den Einsatz auf einem WMR ausgelegt ist, können weitere Annahmen verwendet werden, um die Genauigkeit der visuellen Odometrie zu verbessern. Für einen nicht-holonomischen WMR mit einem bekannten Fahrzeugmodell, entweder Differentialantrieb, Skid-Lenkung oder Ackermann-Lenkung, können die Bewegungsparameter direkt aus den Bilddaten geschätzt werden. Dies verbessert die Genauigkeit und Robustheit des Verfahrens erheblich. Zusätzlich wird eine Ausreißererkennung vorgestellt, die im Modellraum, d.h. den Bewegungsparametern des kinematischen Models, arbeitet. Üblicherweise wird die Ausreißererkennung im Datenraum, d.h. auf den Bildpunkten, durchgeführt. Mittels der Projektion der Umgebung auf die Bodenebene kann auch eine Höhenkarte der Umgebung erstellt werde. Es wird untersucht, ob diese Karte, in Verbindung mit einem detaillierten Fahrzeugmodell, zur Abschätzung zukünftiger Fahrzeugposen verwendet werden kann. Durch die Verwendung einer gemeinsamen bildbasierten Darstellung der Umgebung und des Fahrzeugs wird eine sehr effiziente und dennoch sehr genaue Posenschätzmethode vorgeschlagen. Da die Befahrbarkeit eines Bereichs durch die Fahrzeugposen und mögliche Kollisionen bestimmt werden kann, wird diese Methode für eine neue echtzeitfähige Pfadplanung verwendet. Aus der Fahrzeugpose werden verschiedene Sicherheitskriterien bestimmt, die als Heuristik für einen A*-ähnlichen Planer verwendet werden. Hierzu werden mithilfe des kinematischen Models mögliche zukünftige Fahrzeugposen ermittelt und für jede dieser Posen ein Befahrbarkeitswert berechnet.Das endgültige System ermöglicht eine sichere und robuste Echtzeit-Navigation auch in schwierigen Innen- und Außenumgebungen.The application of wheeled mobile robots (WMRs) is currently expanding from rather controlled industrial or domestic scenarios into more complex urban or outdoor environments, allowing a variety of new use cases. One of these new use cases is described in this thesis: An intelligent personal mobility assistant, based on an electrical rollator. Such a system comes with several requirements: It must be safe and robust, lightweight, inexpensive and should be able to navigate in real-time in order to allow direct physical interaction with the user. As these properties are desirable for most WMRs, all methods proposed in this thesis can also be used with other WMR platforms.First, a visual odometry method is presented, which is tailored to work with a downward facing RGB-D camera. It projects the environment onto a ground plane image and uses an efficient image alignment method to estimate the vehicle motion from consecutive images. As the method is designed for use on a WMR, further constraints can be employed to improve the accuracy of the visual odometry. For a non-holonomic WMR with a known vehicle model, either differential drive, skid steering or Ackermann, the motion parameters of the corresponding kinematic model, instead of the generic motion parameters, can be estimated directly from the image data. This significantly improves the accuracyand robustness of the method. Additionally, an outlier rejection scheme is presented that operates in model space, i.e. the motion parameters of the kinematic model, instead of data space, i.e. image pixels. Furthermore, the projection of the environment onto the ground plane can also be used to create an elevation map of the environment. It is investigated if this map, in conjunction with a detailed vehicle model, can be used to estimate future vehicle poses. By using a common image-based representation of the environment and the vehicle, a very efficient and still highly accurate pose estimation method is proposed. Since the traversability of an area can be determined by the vehicle poses and potential collisions, the pose estimation method is employed to create a novel real-time path planning method. The detailed vehicle model is extended to also represent the vehicle’s chassis for collision detection. Guided by an A*-like planner, a search graph is constructed by propagating the vehicle using its kinematic model to possible future poses and calculating a traversability score for each of these poses. The final system performs safe and robust real-time navigation even in challenging indoor and outdoor environments

    A New Approach towards Non-holonomic Path Planning of Car-like Robots using Rapidly Random Tree Fixed Nodes(RRT*FN)

    Get PDF
    Autonomous car driving is gaining attention in industry and is also an ongoing research in scientific community. Assuming that the cars moving on the road are all autonomous, this thesis introduces an elegant approach to generate non-holonomic collision-free motion of a car connecting any two poses (configurations) set by the user. Particularly this thesis focusses research on "path-planning" of car-like robots in the presence of static obstacles. Path planning of car-like robots can be done using RRT and RRT*. Instead of generating the non-holonomic path between two sampled configurations in RRT, our approach finds a small incremental step towards the next random configuration. Since the incremental step can be in any direction we use RRT to guide the robot from start configuration to end configuration. This "easy-to-implement" mechanism provides flexibility for enabling standard plan- ners to solve for non-holonomic robots without much modifications. Thus, strength of such planners for car path planning can be easily realized. This thesis demon- strates this point by applying this mechanism for an effective variant of RRT called as RRT - Fixed Nodes (RRT*FN). Experiments are conducted by incorporating our mechanism into RRT*FN (termed as RRT*FN-NH) to show the effectiveness and quality of non-holonomic path gener- ated. The experiments are conducted for typical benchmark static environments and the results indicate that RRT*FN-NH is mostly finding the feasible non-holonomic solutions with a fixed number of nodes (satisfying memory requirements) at the cost of increased number of iterations in multiples of 10k. Thus, this thesis proves the applicability of mechanism for a highly constrained planner like RRT*-FN, where the path needs to be found with a fixed number of nodes. Although, comparing the algorithm (RRT*FN-NH) with other existing planners is not the focus of this thesis there are considerable advantages of the mechanism when applied to a planner. They are a) instantaneous non-holonomoic path generation using the strengths of that particular planner, b) ability to modify on-the-fly non-holomic paths, and c) simple to integrate with most of the existing planners. Moreover, applicability of this mechanism using RRT*-FN for non-holonomic path generation of a car is shown for a more realistic urban environments that have typical narrow curved roads. The experiments were done for actual road map obtained from google maps and the feasibility of non-holonomic path generation was shown for such environments. The typical number of iterations needed for finding such feasible solutions were also in multiple of 10k. Increasing speed profiles of the car was tested by limiting max speed and acceleration to see the effect on the number of iterations

    Percepción basada en visión estereoscópica, planificación de trayectorias y estrategias de navegación para exploración robótica autónoma

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia artificial, leída el 13-05-2015En esta tesis se trata el desarrollo de una estrategia de navegación autónoma basada en visión artificial para exploración robótica autónoma de superficies planetarias. Se han desarrollado una serie de subsistemas, módulos y software específicos para la investigación desarrollada en este trabajo, ya que la mayoría de las herramientas existentes para este dominio son propiedad de agencias espaciales nacionales, no accesibles a la comunidad científica. Se ha diseñado una arquitectura software modular multi-capa con varios niveles jerárquicos para albergar el conjunto de algoritmos que implementan la estrategia de navegación autónoma y garantizar la portabilidad del software, su reutilización e independencia del hardware. Se incluye también el diseño de un entorno de trabajo destinado a dar soporte al desarrollo de las estrategias de navegación. Éste se basa parcialmente en herramientas de código abierto al alcance de cualquier investigador o institución, con las necesarias adaptaciones y extensiones, e incluye capacidades de simulación 3D, modelos de vehículos robóticos, sensores, y entornos operacionales, emulando superficies planetarias como Marte, para el análisis y validación a nivel funcional de las estrategias de navegación desarrolladas. Este entorno también ofrece capacidades de depuración y monitorización.La presente tesis se compone de dos partes principales. En la primera se aborda el diseño y desarrollo de las capacidades de autonomía de alto nivel de un rover, centrándose en la navegación autónoma, con el soporte de las capacidades de simulación y monitorización del entorno de trabajo previo. Se han llevado a cabo un conjunto de experimentos de campo, con un robot y hardware real, detallándose resultados, tiempo de procesamiento de algoritmos, así como el comportamiento y rendimiento del sistema en general. Como resultado, se ha identificado al sistema de percepción como un componente crucial dentro de la estrategia de navegación y, por tanto, el foco principal de potenciales optimizaciones y mejoras del sistema. Como consecuencia, en la segunda parte de este trabajo, se afronta el problema de la correspondencia en imágenes estéreo y reconstrucción 3D de entornos naturales no estructurados. Se han analizado una serie de algoritmos de correspondencia, procesos de imagen y filtros. Generalmente se asume que las intensidades de puntos correspondientes en imágenes del mismo par estéreo es la misma. Sin embargo, se ha comprobado que esta suposición es a menudo falsa, a pesar de que ambas se adquieren con un sistema de visión compuesto de dos cámaras idénticas. En consecuencia, se propone un sistema experto para la corrección automática de intensidades en pares de imágenes estéreo y reconstrucción 3D del entorno basado en procesos de imagen no aplicados hasta ahora en el campo de la visión estéreo. Éstos son el filtrado homomórfico y la correspondencia de histogramas, que han sido diseñados para corregir intensidades coordinadamente, ajustando una imagen en función de la otra. Los resultados se han podido optimizar adicionalmente gracias al diseño de un proceso de agrupación basado en el principio de continuidad espacial para eliminar falsos positivos y correspondencias erróneas. Se han estudiado los efectos de la aplicación de dichos filtros, en etapas previas y posteriores al proceso de correspondencia, con eficiencia verificada favorablemente. Su aplicación ha permitido la obtención de un mayor número de correspondencias válidas en comparación con los resultados obtenidos sin la aplicación de los mismos, consiguiendo mejoras significativas en los mapas de disparidad y, por lo tanto, en los procesos globales de percepción y reconstrucción 3D.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu
    corecore