13 research outputs found

    Multiple structure recovery with maximum coverage

    Get PDF
    We present a general framework for geometric model fitting based on a set coverage formulation that caters for intersecting structures and outliers in a simple and principled manner. The multi-model fitting problem is formulated in terms of the optimization of a consensus-based global cost function, which allows to sidestep the pitfalls of preference approaches based on clustering and to avoid the difficult trade-off between data fidelity and complexity of other optimization formulations. Two especially appealing characteristics of this method are the ease with which it can be implemented and its modularity with respect to the solver and to the sampling strategy. Few intelligible parameters need to be set and tuned, namely the inlier threshold and the number of desired models. The summary of the experiments is that our method compares favourably with its competitors overall, and it is always either the best performer or almost on par with the best performer in specific scenarios

    Multiple structure recovery via robust preference analysis

    Get PDF
    2noThis paper address the extraction of multiple models from outlier-contaminated data by exploiting preference analysis and low rank approximation. First points are represented in the preference space, then Robust PCA (Principal Component Analysis) and Symmetric NMF (Non negative Matrix Factorization) are used to break the multi-model fitting problem into many single-model problems, which in turn are tackled with an approach inspired to MSAC (M-estimator SAmple Consensus) coupled with a model-specific scale estimate. Experimental validation on public, real data-sets demonstrates that our method compares favorably with the state of the art.openopenMagri, Luca; Fusiello, AndreaMagri, Luca; Fusiello, Andre

    Exploration de nouvelles structures de modélisation hydrologique globale conceptuelle

    Get PDF
    Plusieurs modèles hydrologiques ont été développés au cours des dernières décennies. Un modèle hydrologique devrait être capable de représenter tous les bassins versants. Les performances des modèles dépendent des caractéristiques du bassin versant étudié; aucun modèle ne convient à toutes les tâches de modélisation. Cette thèse de doctorat a pour but de proposer une méthode de sélection de modèles parmi un grand nombre de candidats. Elle prend en compte : l'identification d'une banque de modèles performants pour des conditions climatiques différentes et la sélection de modèles appropriés selon les conditions climatiques du bassin versant (aride, tempéré ou continentale) et les objectifs de modélisation (débits élevés, moyens ou faibles). La recherche est basée sur 1446 modèles construits en utilisant l‘approche multistructure empirique (Ensemble Multistructure Framework, EMF) et 100 bassins versants états-uniens aux conditions climatiques diversifiées. L'objectif de cette étude est de valoriser les approches flexibles afin d'identifier des modèles performants pour une diversité de climats. La sélection des modèles est ainsi basée sur les performances individuelles de 1446 modèles en les comparant avec un modèle de référence (GR4J). Sur la base de cette étude, une banque de 80 modèles diversifiés, issus des 1446 modèles initiaux, a été proposée pour d‘autres applications. Pour évaluer l'impact du climat et de la métrique sur la performance du modèle, les 80 modèles présélectionnés ont été évalués sur les trois types de climat et sur les trois objectifs de modélisation. Cette étude propose au final quatre nouveaux modèles hydrologiques conceptuels, adaptés à des conditions climatiques et hydrologiques spécifiques. La modélisation hydrologique demeure imparfaite en raison d'un grand nombre d'incertitudes liées notamment à la description de la transformation pluie-débit par les structures du modèle hydrologique. L'approche multimodèle est une solution alternative, parce que la combinaison de modèles existants peut mener à de meilleurs résultats par rapport aux modèles individuels. La diversité des structures des modèles constitue souvent un des premiers principes du fonctionnement d‘un multimodèle de manière à compenser les erreurs et à améliorer les performances. Les 80 modèles présélectionnés et l'algorithme Backward Greedy Selection (BGS) sont ainsi utilisés afin de sélectionner l‘ensemble des modèles à combiner. Les tests ont été effectués sur six critères (MCRPS, KGEsqrt, Mlogs, NRD, PIT et RDmse). Les résultats montrent que l'optimisation par MCRPS est la plus intéressante.Many hydrologic models were developed in the last few decades. They should be capable of simulating all of the catchments but, in practice, their performance is dependent on the geology and climate, so no model structure is suitable for all modeling tasks. This doctoral thesis aims at proposing a model selection method, from a grand pool of candidates, which accounts for the identification of a pool of successful models in diversified climates conditions and the selection of appropriate models for the catchment climatic conditions (arid, humid, and continental) and modeling objectives (high, medium and low flows). It is based on 1446 models constructed using the Ensemble Multistructure Framework (EMF) and 100 climatically diversified American catchments. The focus of this study is to value flexible modeling approaches to identify successful models for a variety of climates. The model selection is first based on the individual performance of the 1446 models, comparing them to a reference model (GR4J). A pool of 80 diversified models is then identified for further investigation. To evaluate the impact of climate and metric on model performance, the 80 preselected models are evaluated on the three types of climates and three modeling objectives. At the end, four new lumped conceptual hydrologic models are tailored for specific climate and flow conditions. Hydrological modeling remains imperfect due to a large number of uncertainties, particularly related to the description of rainfall-flow transformation by hydrological model structures. The multimodel approach is an alternative solution, because the combination of existing models gives better results than individual ones. The diversity of model structures touches one of the first principles of the operation of a multimodel is the compensation of the errors to improve the performances. The 80 preselected models and the Backward Greedy Selection (BGS) algorithm are then used to select the models set to combine. Tests are performed on six optimizations (MCRPS, KGEsqrt, Mlogs, NRD, PIT and RDmse). Results show that, the optimization by the MCRPS is most interesting when compare to other criterions

    CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus

    Get PDF
    We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements. Applications include finding multiple vanishing points in man-made scenes, fitting planes to architectural imagery, or estimating multiple rigid motions within the same sequence. In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data. A neural network conditioned on previously detected models guides a RANSAC estimator to different subsets of all measurements, thereby finding model instances one after another. We train our method supervised as well as self-supervised. For supervised training of the search strategy, we contribute a new dataset for vanishing point estimation. Leveraging this dataset, the proposed algorithm is superior with respect to other robust estimators as well as to designated vanishing point estimation algorithms. For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.Comment: CVPR 202

    MULTIPLE STRUCTURE RECOVERY VIA PREFERENCE ANALYSIS IN CONCEPTUAL SPACE

    Get PDF
    Finding multiple models (or structures) that fit data corrupted by noise and outliers is an omnipresent problem in empirical sciences, includingComputer Vision, where organizing unstructured visual data in higher level geometric structures is a necessary and basic step to derive better descriptions and understanding of a scene. This challenging problem has a chicken-and-egg pattern: in order to estimate models one needs to first segment the data, and in order to segment the data it is necessary to know which structure points belong to. Most of the multi-model fitting techniques proposed in the literature can be divided in two classes, according to which horn of the chicken-egg-dilemma is addressed first, namely consensus and preference analysis. Consensus-based methods put the emphasis on the estimation part of the problem and focus on models that describe has many points as possible. On the other side, preference analysis concentrates on the segmentation side in order to find a proper partition of the data, from which model estimation follows. The research conducted in this thesis attempts to provide theoretical footing to the preference approach and to elaborate it in term of performances and robustness. In particular, we derive a conceptual space in which preference analysis is robustly performed thanks to three different formulations of multiple structures recovery, i.e. linkage clustering, spectral analysis and set coverage. In this way we are able to propose new and effective strategies to link together consensus and preferences based criteria to overcome the limitation of both. In order to validate our researches, we have applied our methodologies to some significant Computer Vision tasks including: geometric primitive fitting (e.g. line fitting; circle fitting; 3D plane fitting), multi-body segmentation, plane segmentation, and video motion segmentation

    Contributions to Ensemble Classifiers with Image Analysis Applications

    Get PDF
    134 p.Ésta tesis tiene dos aspectos fundamentales, por un lado, la propuesta denuevas arquitecturas de clasificadores y, por otro, su aplicación a el análisis deimagen.Desde el punto de vista de proponer nuevas arquitecturas de clasificaciónla tesis tiene dos contribucciones principales. En primer lugar la propuestade un innovador ensemble de clasificadores basado en arquitecturas aleatorias,como pueden ser las Extreme Learning Machines (ELM), Random Forest (RF) yRotation Forest, llamado Hybrid Extreme Rotation Forest (HERF) y su mejoraAnticipative HERF (AHERF) que conlleva una selección del modelo basada enel rendimiento de predicción para cada conjunto de datos específico. Ademásde lo anterior, proveemos una prueba formal tanto del AHERF, como de laconvergencia de los ensembles de regresores ELMs que mejoran la usabilidad yreproducibilidad de los resultados.En la vertiente de aplicación hemos estado trabajando con dos tipos de imágenes:imágenes hiperespectrales de remote sensing, e imágenes médicas tanto depatologías específicas de venas de sangre como de imágenes para el diagnósticode Alzheimer. En todos los casos los ensembles de clasificadores han sido la herramientacomún además de estrategias especificas de aprendizaje activo basadasen dichos ensembles de clasificadores. En el caso concreto de la segmentaciónde vasos sanguíneos nos hemos enfrentado con problemas, uno relacionado conlos trombos del Aneurismas de Aorta Abdominal en imágenes 3D de tomografíacomputerizada y el otro la segmentación de venas sangineas en la retina. Losresultados en ambos casos en términos de rendimiento en clasificación y ahorrode tiempo en la segmentación humana nos permiten recomendar esos enfoquespara la práctica clínica.Chapter 1Background y contribuccionesDado el espacio limitado para realizar el resumen de la tesis hemos decididoincluir un resumen general con los puntos más importantes, una pequeña introducciónque pudiera servir como background para entender los conceptos básicosde cada uno de los temas que hemos tocado y un listado con las contribuccionesmás importantes.1.1 Ensembles de clasificadoresLa idea de los ensembles de clasificadores fue propuesta por Hansen y Salamon[4] en el contexto del aprendizaje de las redes neuronales artificiales. Sutrabajo mostró que un ensemble de redes neuronales con un esquema de consensogrupal podía mejorar el resultado obtenido con una única red neuronal.Los ensembles de clasificadores buscan obtener unos resultados de clasificaciónmejores combinando clasificadores débiles y diversos [8, 9]. La propuesta inicialde ensemble contenía una colección homogena de clasificadores individuales. ElRandom Forest es un claro ejemplo de ello, puesto que combina la salida de unacolección de árboles de decisión realizando una votación por mayoría [2, 3], yse construye utilizando una técnica de remuestreo sobre el conjunto de datos ycon selección aleatoria de variables.2CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 31.2 Aprendizaje activoLa construcción de un clasificador supervisado consiste en el aprendizaje de unaasignación de funciones de datos en un conjunto de clases dado un conjunto deentrenamiento etiquetado. En muchas situaciones de la vida real la obtenciónde las etiquetas del conjunto de entrenamiento es costosa, lenta y propensa aerrores. Esto hace que la construcción del conjunto de entrenamiento sea unatarea engorrosa y requiera un análisis manual exaustivo de la imagen. Esto se realizanormalmente mediante una inspección visual de las imágenes y realizandoun etiquetado píxel a píxel. En consecuencia el conjunto de entrenamiento esaltamente redundante y hace que la fase de entrenamiento del modelo sea muylenta. Además los píxeles ruidosos pueden interferir en las estadísticas de cadaclase lo que puede dar lugar a errores de clasificación y/o overfitting. Por tantoes deseable que un conjunto de entrenamiento sea construido de una manera inteligente,lo que significa que debe representar correctamente los límites de clasemediante el muestreo de píxeles discriminantes. La generalización es la habilidadde etiquetar correctamente datos que no se han visto previamente y quepor tanto son nuevos para el modelo. El aprendizaje activo intenta aprovecharla interacción con un usuario para proporcionar las etiquetas de las muestrasdel conjunto de entrenamiento con el objetivo de obtener la clasificación másprecisa utilizando el conjunto de entrenamiento más pequeño posible.1.3 AlzheimerLa enfermedad de Alzheimer es una de las causas más importantes de discapacidaden personas mayores. Dado el envejecimiento poblacional que es una realidaden muchos países, con el aumento de la esperanza de vida y con el aumentodel número de personas mayores, el número de pacientes con demencia aumentarátambién. Debido a la importancia socioeconómica de la enfermedad enlos países occidentales existe un fuerte esfuerzo internacional focalizado en laenfermedad del Alzheimer. En las etapas tempranas de la enfermedad la atrofiacerebral suele ser sutil y está espacialmente distribuida por diferentes regionescerebrales que incluyen la corteza entorrinal, el hipocampo, las estructuras temporaleslateral e inferior, así como el cíngulo anterior y posterior. Son muchoslos esfuerzos de diseño de algoritmos computacionales tratando de encontrarbiomarcadores de imagen que puedan ser utilizados para el diagnóstico no invasivodel Alzheimer y otras enfermedades neurodegenerativas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 41.4 Segmentación de vasos sanguíneosLa segmentación de los vasos sanguíneos [1, 7, 6] es una de las herramientas computacionalesesenciales para la evaluación clínica de las enfermedades vasculares.Consiste en particionar un angiograma en dos regiones que no se superponen:la región vasculares y el fondo. Basándonos en los resultados de dicha particiónse pueden extraer, modelar, manipular, medir y visualizar las superficies vasculares.Éstas estructuras son muy útiles y juegan un rol muy imporntate en lostratamientos endovasculares de las enfermedades vasculares. Las enfermedadesvasculares son una de las principales fuentes de morbilidad y mortalidad en todoel mundo.Aneurisma de Aorta Abdominal El Aneurisma de Aorta Abdominal (AAA)es una dilatación local de la Aorta que ocurre entre las arterias renal e ilíaca. Eldebilitamiento de la pared de la aorta conduce a su deformación y la generaciónde un trombo. Generalmente, un AAA se diagnostica cuando el diámetro anterioposteriormínimo de la aorta alcanza los 3 centímetros [5]. La mayoría delos aneurismas aórticos son asintomáticos y sin complicaciones. Los aneurismasque causan los síntomas tienen un mayor riesgo de ruptura. El dolor abdominalo el dolor de espalda son las dos principales características clínicas que sugiereno bien la reciente expansión o fugas. Las complicaciones son a menudo cuestiónde vida o muerte y pueden ocurrir en un corto espacio de tiempo. Por lo tanto,el reto consiste en diagnosticar lo antes posible la aparición de los síntomas.Imágenes de Retina La evaluación de imágenes del fondo del ojo es una herramientade diagnóstico de la patología vascular y no vascular. Dicha inspecciónpuede revelar hipertensión, diabetes, arteriosclerosis, enfermedades cardiovascularese ictus. Los principales retos para la segmentación de vasos retinianos son:(1) la presencia de lesiones que se pueden interpretar de forma errónea comovasos sanguíneos; (2) bajo contraste alrededor de los vasos más delgados, (3)múltiples escalas de tamaño de los vasos.1.5 ContribucionesÉsta tesis tiene dos tipos de contribuciones. Contribuciones computacionales ycontribuciones orientadas a una aplicación o prácticas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 5Desde un punto de vista computacional las contribuciones han sido las siguientes:¿ Un nuevo esquema de aprendizaje activo usando Random Forest y el cálculode la incertidumbre que permite una segmentación de imágenes rápida,precisa e interactiva.¿ Hybrid Extreme Rotation Forest.¿ Adaptative Hybrid Extreme Rotation Forest.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales.¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.Desde un punto de vista práctico:¿ Imágenes médicas¿ Aprendizaje activo combinado con HERF para la segmentación deimágenes de tomografía computerizada.¿ Mejorar el aprendizaje activo para segmentación de imágenes de tomografíacomputerizada con información de dominio.¿ Aprendizaje activo con el clasificador bootstrapped dendritic aplicadoa segmentación de imágenes médicas.¿ Meta-ensembles de clasificadores para detección de Alzheimer conimágenes de resonancia magnética.¿ Random Forest combinado con aprendizaje activo para segmentaciónde imágenes de retina.¿ Segmentación automática de grasa subcutanea y visceral utilizandoresonancia magnética.¿ Imágenes hiperespectrales¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales concorrección espacial usando AHERF.¿ Método semisupervisado de clasificación utilizando ensembles de ELMsy con regularización espacial

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered
    corecore