3,510 research outputs found

    iCORPP: Interleaved Commonsense Reasoning and Probabilistic Planning on Robots

    Full text link
    Robot sequential decision-making in the real world is a challenge because it requires the robots to simultaneously reason about the current world state and dynamics, while planning actions to accomplish complex tasks. On the one hand, declarative languages and reasoning algorithms well support representing and reasoning with commonsense knowledge. But these algorithms are not good at planning actions toward maximizing cumulative reward over a long, unspecified horizon. On the other hand, probabilistic planning frameworks, such as Markov decision processes (MDPs) and partially observable MDPs (POMDPs), well support planning to achieve long-term goals under uncertainty. But they are ill-equipped to represent or reason about knowledge that is not directly related to actions. In this article, we present a novel algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers. In this process, robot decision-making problems are decomposed into two interdependent (smaller) subproblems that focus on reasoning to "understand the world" and planning to "achieve the goal" respectively. Contextual knowledge is represented in the reasoning component, which makes the planning component epistemic and enables active information gathering. The developed algorithm has been implemented and evaluated both in simulation and on real robots using everyday service tasks, such as indoor navigation, dialog management, and object delivery. Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines including handcrafted action policies

    Aprendizagem de coordenação em sistemas multi-agente

    Get PDF
    The ability for an agent to coordinate with others within a system is a valuable property in multi-agent systems. Agents either cooperate as a team to accomplish a common goal, or adapt to opponents to complete different goals without being exploited. Research has shown that learning multi-agent coordination is significantly more complex than learning policies in singleagent environments, and requires a variety of techniques to deal with the properties of a system where agents learn concurrently. This thesis aims to determine how can machine learning be used to achieve coordination within a multi-agent system. It asks what techniques can be used to tackle the increased complexity of such systems and their credit assignment challenges, how to achieve coordination, and how to use communication to improve the behavior of a team. Many algorithms for competitive environments are tabular-based, preventing their use with high-dimension or continuous state-spaces, and may be biased against specific equilibrium strategies. This thesis proposes multiple deep learning extensions for competitive environments, allowing algorithms to reach equilibrium strategies in complex and partially-observable environments, relying only on local information. A tabular algorithm is also extended with a new update rule that eliminates its bias against deterministic strategies. Current state-of-the-art approaches for cooperative environments rely on deep learning to handle the environment’s complexity and benefit from a centralized learning phase. Solutions that incorporate communication between agents often prevent agents from being executed in a distributed manner. This thesis proposes a multi-agent algorithm where agents learn communication protocols to compensate for local partial-observability, and remain independently executed. A centralized learning phase can incorporate additional environment information to increase the robustness and speed with which a team converges to successful policies. The algorithm outperforms current state-of-the-art approaches in a wide variety of multi-agent environments. A permutation invariant network architecture is also proposed to increase the scalability of the algorithm to large team sizes. Further research is needed to identify how can the techniques proposed in this thesis, for cooperative and competitive environments, be used in unison for mixed environments, and whether they are adequate for general artificial intelligence.A capacidade de um agente se coordenar com outros num sistema é uma propriedade valiosa em sistemas multi-agente. Agentes cooperam como uma equipa para cumprir um objetivo comum, ou adaptam-se aos oponentes de forma a completar objetivos egoístas sem serem explorados. Investigação demonstra que aprender coordenação multi-agente é significativamente mais complexo que aprender estratégias em ambientes com um único agente, e requer uma variedade de técnicas para lidar com um ambiente onde agentes aprendem simultaneamente. Esta tese procura determinar como aprendizagem automática pode ser usada para encontrar coordenação em sistemas multi-agente. O documento questiona que técnicas podem ser usadas para enfrentar a superior complexidade destes sistemas e o seu desafio de atribuição de crédito, como aprender coordenação, e como usar comunicação para melhorar o comportamento duma equipa. Múltiplos algoritmos para ambientes competitivos são tabulares, o que impede o seu uso com espaços de estado de alta-dimensão ou contínuos, e podem ter tendências contra estratégias de equilíbrio específicas. Esta tese propõe múltiplas extensões de aprendizagem profunda para ambientes competitivos, permitindo a algoritmos atingir estratégias de equilíbrio em ambientes complexos e parcialmente-observáveis, com base em apenas informação local. Um algoritmo tabular é também extendido com um novo critério de atualização que elimina a sua tendência contra estratégias determinísticas. Atuais soluções de estado-da-arte para ambientes cooperativos têm base em aprendizagem profunda para lidar com a complexidade do ambiente, e beneficiam duma fase de aprendizagem centralizada. Soluções que incorporam comunicação entre agentes frequentemente impedem os próprios de ser executados de forma distribuída. Esta tese propõe um algoritmo multi-agente onde os agentes aprendem protocolos de comunicação para compensarem por observabilidade parcial local, e continuam a ser executados de forma distribuída. Uma fase de aprendizagem centralizada pode incorporar informação adicional sobre ambiente para aumentar a robustez e velocidade com que uma equipa converge para estratégias bem-sucedidas. O algoritmo ultrapassa abordagens estado-da-arte atuais numa grande variedade de ambientes multi-agente. Uma arquitetura de rede invariante a permutações é também proposta para aumentar a escalabilidade do algoritmo para grandes equipas. Mais pesquisa é necessária para identificar como as técnicas propostas nesta tese, para ambientes cooperativos e competitivos, podem ser usadas em conjunto para ambientes mistos, e averiguar se são adequadas a inteligência artificial geral.Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de ApoioPrograma Doutoral em Informátic

    Continuous Planning and Execution with Timelines

    Get PDF
    Planning systems need to be endowed with some additional features to cope effectively with execution: e.g., the ability to keep the plan database updated with respect to the actual feedbacks provided by the controlled system, to mention but one. In this paper, we identify a set of noteworthy planning and execution open issues relatively to the timeline-based planning approach. We address those issues presenting a domain independent deliberative system, implemented on top of the APSI-TRF, the A PSI Timeline-based Representation Framework, extended with timeline dispatching and execution-supervision capabilities so as to allow continuous planning and closed-loop re-planning activities. Some ongoing research directions are also briefly introduced
    corecore