68,102 research outputs found

    DWT-CompCNN: Deep Image Classification Network for High Throughput JPEG 2000 Compressed Documents

    Full text link
    For any digital application with document images such as retrieval, the classification of document images becomes an essential stage. Conventionally for the purpose, the full versions of the documents, that is the uncompressed document images make the input dataset, which poses a threat due to the big volume required to accommodate the full versions of the documents. Therefore, it would be novel, if the same classification task could be accomplished directly (with some partial decompression) with the compressed representation of documents in order to make the whole process computationally more efficient. In this research work, a novel deep learning model, DWT CompCNN is proposed for classification of documents that are compressed using High Throughput JPEG 2000 (HTJ2K) algorithm. The proposed DWT-CompCNN comprises of five convolutional layers with filter sizes of 16, 32, 64, 128, and 256 consecutively for each increasing layer to improve learning from the wavelet coefficients extracted from the compressed images. Experiments are performed on two benchmark datasets- Tobacco-3482 and RVL-CDIP, which demonstrate that the proposed model is time and space efficient, and also achieves a better classification accuracy in compressed domain.Comment: In Springer Journal - Pattern Analysis and Applications under Minor Revisio

    Efficient Learning for Undirected Topic Models

    Get PDF
    Replicated Softmax model, a well-known undirected topic model, is powerful in extracting semantic representations of documents. Traditional learning strategies such as Contrastive Divergence are very inefficient. This paper provides a novel estimator to speed up the learning based on Noise Contrastive Estimate, extended for documents of variant lengths and weighted inputs. Experiments on two benchmarks show that the new estimator achieves great learning efficiency and high accuracy on document retrieval and classification.Comment: Accepted by ACL-IJCNLP 2015 short paper. 6 page

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies

    Queensland University of Technology at TREC 2005

    Get PDF
    The Information Retrieval and Web Intelligence (IR-WI) research group is a research team at the Faculty of Information Technology, QUT, Brisbane, Australia. The IR-WI group participated in the Terabyte and Robust track at TREC 2005, both for the first time. For the Robust track we applied our existing information retrieval system that was originally designed for use with structured (XML) retrieval to the domain of document retrieval. For the Terabyte track we experimented with an open source IR system, Zettair and performed two types of experiments. First, we compared Zettair’s performance on both a high-powered supercomputer and a distributed system across seven midrange personal computers. Second, we compared Zettair’s performance when a standard TREC title is used, compared with a natural language query, and a query expanded with synonyms. We compare the systems both in terms of efficiency and retrieval performance. Our results indicate that the distributed system is faster than the supercomputer, while slightly decreasing retrieval performance, and that natural language queries also slightly decrease retrieval performance, while our query expansion technique significantly decreased performance

    Combining relevance information in a synchronous collaborative information retrieval environment

    Get PDF
    Traditionally information retrieval (IR) research has focussed on a single user interaction modality, where a user searches to satisfy an information need. Recent advances in both web technologies, such as the sociable web of Web 2.0, and computer hardware, such as tabletop interface devices, have enabled multiple users to collaborate on many computer-related tasks. Due to these advances there is an increasing need to support two or more users searching together at the same time, in order to satisfy a shared information need, which we refer to as Synchronous Collaborative Information Retrieval. Synchronous Collaborative Information Retrieval (SCIR) represents a significant paradigmatic shift from traditional IR systems. In order to support an effective SCIR search, new techniques are required to coordinate users' activities. In this chapter we explore the effectiveness of a sharing of knowledge policy on a collaborating group. Sharing of knowledge refers to the process of passing relevance information across users, if one user finds items of relevance to the search task then the group should benefit in the form of improved ranked lists returned to each searcher. In order to evaluate the proposed techniques we simulate two users searching together through an incremental feedback system. The simulation assumes that users decide on an initial query with which to begin the collaborative search and proceed through the search by providing relevance judgments to the system and receiving a new ranked list. In order to populate these simulations we extract data from the interaction logs of various experimental IR systems from previous Text REtrieval Conference (TREC) workshops
    • 

    corecore