21,382 research outputs found

    Architectural Framework for Large-Scale Multicast in Mobile Ad Hoc Networks

    Full text link
    Emerging ad hoc networks are infrastructure-less networks consisting of wireless devices with various power constraints, capabilities and mobility characteristics. An essential capability in future ad hoc networks is the ability to provide scalable multicast services. This paper presents a novel adaptive architecture to support multicast services in large-scale wide-area ad hoc networks. Existing works on multicast in ad hoc networks address only small size networks. Our main design goals are scalability, robustness and efficiency. We propose a self-configuring hierarchy extending zone-based routing with the notion of contacts based on the small world graphs phenomenon and new metrics of stability and mobility. We introduce a new geographic-based multicast address allocation scheme coupled with adaptive anycast based on group popularity. Our scheme is the first of its kind and promises efficient and robust operation in the common case. Also, based on the new concept of rendezvous regions, we provide a bootstrap mechanism for the multicast service; a challenge generally ignored in previous work.Comment: 10 pages, 4 figure

    Mobile Edge Cloud: Opportunities and Challenges

    Full text link
    Mobile edge cloud is emerging as a promising technology to the internet of things and cyber-physical system applications such as smart home and intelligent video surveillance. In a smart home, various sensors are deployed to monitor the home environment and physiological health of individuals. The data collected by sensors are sent to an application, where numerous algorithms for emotion and sentiment detection, activity recognition and situation management are applied to provide healthcare- and emergency-related services and to manage resources at the home. The executions of these algorithms require a vast amount of computing and storage resources. To address the issue, the conventional approach is to send the collected data to an application on an internet cloud. This approach has several problems such as high communication latency, communication energy consumption and unnecessary data traffic to the core network. To overcome the drawbacks of the conventional cloud-based approach, a new system called mobile edge cloud is proposed. In mobile edge cloud, multiple mobiles and stationary devices interconnected through wireless local area networks are combined to create a small cloud infrastructure at a local physical area such as a home. Compared to traditional mobile distributed computing systems, mobile edge cloud introduces several complex challenges due to the heterogeneous computing environment, heterogeneous and dynamic network environment, node mobility, and limited battery power. The real-time requirements associated with the internet of things and cyber-physical system applications make the problem even more challenging. In this paper, we describe the applications and challenges associated with the design and development of mobile edge cloud system and propose an architecture based on a cross layer design approach for effective decision making.Comment: 4th Annual Conference on Computational Science and Computational Intelligence, December 14-16, 2017, Las Vegas, Nevada, USA. arXiv admin note: text overlap with arXiv:1810.0704

    A Mobile Ad hoc Cloud Computing and Networking Infrastructure for Automated Video Surveillance System

    Full text link
    Mobile automated video surveillance system involves application of real-time image and video processing algorithms which require a vast quantity of computing and storage resources. To support the execution of mobile automated video surveillance system, a mobile ad hoc cloud computing and networking infrastructure is proposed in which multiple mobile devices interconnected through a mobile ad hoc network are combined to create a virtual supercomputing node. An energy efficient resource allocation scheme has also been proposed for allocation of realtime automated video surveillance tasks. To enable communication between mobile devices, a Wi-Fi Direct based mobile ad hoc cloud networking infrastructure has been developed. More specifically, a routing layer has been developed to support communication between Wi-Fi Direct devices in a group and multi-hop communication between devices across the group. The proposed system has been implemented on a group of Wi-Fi Direct-enabled Samsung mobile devices.Comment: Technical Reports, 14 Page

    Data aggregation routing protocols in wireless sensor networks: a taxonomy

    Full text link
    Routing in Wireless Sensor Network (WSN) aims to interconnect sensor nodes via single or multi-hop paths. The routes are established to forward data packets from sensor nodes to the sink. Establishing a single path to report each data packet results in increasing energy consumption in WSN, hence, data aggregation routing is used to combine data packets and consequently reduce the number of transmissions. This reduces the routing overhead by eliminating redundant and meaningless data. There are two models for data aggregation routing in WSN: mobile agent and client/server. This paper describes data aggregation routing and classifies then the routing protocols according to the network architecture and routing models. The key issues of the data aggregation routing models (client/server and mobile agent) are highlighted and discussed

    Density-aware Dynamic Mobile Networks: Opportunities and Challenges

    Full text link
    We experience a major paradigm change in mobile networks. The infrastructure of cellular networks becomes mobile as it is densified by using mobile and nomadic small cells to increase coverage and capacity. Furthermore, the innovative approaches such as green operation through sleep scheduling, user-controlled small cells, and end-to-end slicing will make the network highly dynamic. Mobile cells, while bringing many benefits, introduce many unconventional challenges that we present in this paper. We have to introduce novel techniques for adapting network functions, communication protocols and their parameters to network density. Especially when cells on wheels or wings are considered, static and man-made configurations will waste valuable resources such as spectrum or energy if density is not considered as an optimization parameter. In this paper, we present the existing density estimators. We analyze the impact of density on coverage, interference, mobility management, scalability, capacity, caching, routing protocols and energy consumption. We evaluate nomadic cells in dynamic networks in a comprehensive way and illustrate the potential objectives we can achieve by adapting mobile networks to base station density. The main challenges we may face by employing dynamic networks and how we can tackle these problems are discussed in detail

    A Survey on Software-Defined VANETs: Benefits, Challenges, and Future Directions

    Full text link
    The evolving of Fifth Generation (5G) networks isbecoming more readily available as a major driver of the growthof new applications and business models. Vehicular Ad hocNetworks (VANETs) and Software Defined Networking (SDN)represent the key enablers of 5G technology with the developmentof next generation intelligent vehicular networks and applica-tions. In recent years, researchers have focused on the integrationof SDN and VANET, and look at different topics related to thearchitecture, the benefits of software-defined VANET servicesand the new functionalities to adapt them. However, securityand robustness of the complete architecture is still questionableand have been largely negleted. Moreover, the deployment andintegration of novel entities and several architectural componentsdrive new security threats and vulnerabilities.In this paper, first we survey the state-of-the-art SDN basedVehicular ad-hoc Network (SDVN) architectures for their net-working infrastructure design, functionalities, benefits, and chal-lenges. Then we discuss these SDVN architectures against majorsecurity threats that violate the key security services such asavailability, confidentiality, authentication, and data integrity.We also propose different countermeasures to these threats.Finally, we discuss the lessons learned with the directions offuture research work towards provisioning stringent security andprivacy solutions in future SDVN architectures. To the best of ourknowledge, this is the first comprehensive work that presents sucha survey and analysis on SDVNs in the era of future generationnetworks (e.g., 5G, and Information centric networking) andapplications (e.g., intelligent transportation system, and IoT-enabled advertising in VANETs).Comment: 17 pages, 2 figure

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Data Dissemination in Opportunistic Networks

    Full text link
    Mobile devices integrating wireless short-range communication technologies make possible new applications for spontaneous communication, interaction and collaboration. An interesting approach is to use collaboration to facilitate communication when mobile devices are not able to establish direct communication paths. Opportunistic networks, formed when mobile devices communicate with each other while users are in close proximity, can help applications still exchange data in such cases. In opportunistic networks routes are built dynamically, as each mobile device acts according to the store-carry-and-forward paradigm. Thus, contacts between mobile devices are seen as opportunities to move data towards destination. In such networks data dissemination is done using forwarding and is usually based on a publish/subscribe model. Opportunistic data dissemination also raises questions concerning user privacy and incentives. Such problems are addressed differently by various opportunistic data dissemination techniques. In this paper we analyze existing relevant work in the area of data dissemination in opportunistic networks. We present the categories of a proposed taxonomy that captures the capabilities of data dissemination techniques used in such networks. Moreover, we survey relevant data dissemination techniques and analyze them using the proposed taxonomy.Comment: Please cite this as "Radu Ciobanu, Ciprian Dobre, Data Dissemination in Opportunistic Networks, in Proc. of 18th International Conference on Control Systems and Computer Science (CSCS-18), Bucharest, Romania, 2011, pp. 529-536, ISSN: 2066-4451, Politehnica Press

    An Efficient and User Privacy-Preserving Routing Protocol for Wireless Mesh Networks

    Full text link
    Wireless mesh networks (WMNs) have emerged as a key technology for next generation wireless broadband networks showing rapid progress and inspiring numerous compelling applications. A WMN comprises of a set of mesh routers (MRs) and mesh clients (MCs), where MRs are connected to the Internet backbone through the Internet gateways (IGWs). The MCs are wireless devices and communicate among themselves over possibly multi-hop paths with or without the involvement of MRs. User privacy and security have been primary concerns in WMNs due to their peer-to-peer network topology, shared wireless medium, stringent resource constraints, and highly dynamic environment. Moreover, to support real-time applications, WMNs must also be equipped with robust, reliable and efficient routing protocols so as to minimize the end-to-end latency. Design of a secure and efficient routing protocol for WMNs, therefore, is of paramount importance. In this paper, we propose an efficient and reliable routing protocol that also provides user anonymity in WMNs. The protocol is based on an accurate estimation of the available bandwidth in the wireless links and a robust estimation of the end-to-end delay in a routing path, and minimization of control message overhead. The user anonymity, authentication and data privacy is achieved by application of a novel protocol that is based on Rivest's ring signature scheme. Simulations carried out on the proposed protocol demonstrate that it is more efficient than some of the existing routing protocols.Comment: 14 pages, 10 figures, i tabl

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore