33,655 research outputs found

    A RELIABLE ROUTING MECHANISM WITH ENERGY-EFFICIENT NODE SELECTION FOR DATA TRANSMISSION USING A GENETIC ALGORITHM IN WIRELESS SENSOR NETWORK

    Get PDF
    Energy-efficient and reliable data routing is critical in Wireless Sensor Networks (WSNs) application scenarios. Due to oscillations in wireless links in adverse environmental conditions, sensed data may not be sent to a sink node. As a result of wireless connectivity fluctuations, packet loss may occur. However, retransmission-based approaches are used to improve reliable data delivery. These approaches need a high quantity of data transfers for reliable data collection. Energy usage and packet delivery delays increase as a result of an increase in data transmissions. An energy-efficient data collection approach based on a genetic algorithm has been suggested in this paper to determine the most energy-efficient and reliable data routing in wireless sensor networks. The proposed algorithm reduced the number of data transmissions, energy consumption, and delay in network packet delivery. However, increased network lifetime. Furthermore, simulation results demonstrated the efficacy of the proposed method, considering the parameters energy consumption, network lifetime, number of data transmissions, and average delivery delay

    Reliable routing for low-power smart space communications

    Get PDF
    Smart Space (SS) communications has rapidly emerged as an exciting new paradigm that includes ubiquitous, grid, and pervasive computing to provide intelligence, insight, and vision for the emerging world of intelligent environments, products, services and human interaction. Dependable networking of a smart space environment can be ensured through reliable routing, efficient selection of error free links, rapid recovery from broken links and the avoidance of congested gateways. Since link failure and packet loss are inevitable in smart space wireless sensor networks, we have developed an efficient scheme to achieve a reliable data collection for smart spaces composed of low capacity wireless sensor nodes. Wireless Sensor Networks (WSNs) must tolerate a certain lack of reliability without a significant effect on packet delivery performance, data aggregation accuracy or energy consumption. In this paper we present an effective hybrid scheme that adaptively reduces control traffic with a metric that measures the reception success ratio of representative data packets. Based on this approach, our proposed routing scheme can achieve reduced energy consumption while ensuring minimal packet loss in environments featuring high link failure rates. The performance of our proposed routing scheme is experimentally investigated using both simulations and a test bed of TelosB motes. It is shown to be more robust and energy efficient than the network layer provided by TinyOS2.x. Our results show that the scheme is able to maintain better than 95% connectivity in an interference-prone medium while achieving a 35% energy saving

    An effective data-collection scheme with AUV path planning in underwater wireless sensor networks

    Get PDF
    Data collection in underwater wireless sensor networks (UWSNs) using autonomous underwater vehicles (AUVs) is a more robust solution than traditional approaches, instead of transmitting data from each node to a destination node. However, the design of delay-aware and energy-efficient path planning for AUVs is one of the most crucial problems in collecting data for UWSNs. To reduce network delay and increase network lifetime, we proposed a novel reliable AUV-based data-collection routing protocol for UWSNs. The proposed protocol employs a route planning mechanism to collect data using AUVs. The sink node directs AUVs for data collection from sensor nodes to reduce energy consumption. First, sensor nodes are organized into clusters for better scalability, and then, these clusters are arranged into groups to assign an AUV to each group. Second, the traveling path for each AUV is crafted based on the Markov decision process (MDP) for the reliable collection of data. The simulation results affirm the effectiveness and efficiency of the proposed technique in terms of throughput, energy efficiency, delay, and reliability. © 2022 Wahab Khan et al

    PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Get PDF
    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Developing an Efficient DMCIS with Next-Generation Wireless Networks

    Get PDF
    The impact of extreme events across the globe is extraordinary which continues to handicap the advancement of the struggling developing societies and threatens most of the industrialized countries in the globe. Various fields of Information and Communication Technology have widely been used for efficient disaster management; but only to a limited extent though, there is a tremendous potential for increasing efficiency and effectiveness in coping with disasters with the utilization of emerging wireless network technologies. Early warning, response to the particular situation and proper recovery are among the main focuses of an efficient disaster management system today. Considering these aspects, in this paper we propose a framework for developing an efficient Disaster Management Communications and Information System (DMCIS) which is basically benefited by the exploitation of the emerging wireless network technologies combined with other networking and data processing technologies.Comment: 6 page

    A Secure Lightweight Approach of Node Membership Verification in Dense HDSN

    Full text link
    In this paper, we consider a particular type of deployment scenario of a distributed sensor network (DSN), where sensors of different types and categories are densely deployed in the same target area. In this network, the sensors are associated with different groups, based on their functional types and after deployment they collaborate with one another in the same group for doing any assigned task for that particular group. We term this sort of DSN as a heterogeneous distributed sensor network (HDSN). Considering this scenario, we propose a secure membership verification mechanism using one-way accumulator (OWA) which ensures that, before collaborating for a particular task, any pair of nodes in the same deployment group can verify each other-s legitimacy of membership. Our scheme also supports addition and deletion of members (nodes) in a particular group in the HDSN. Our analysis shows that, the proposed scheme could work well in conjunction with other security mechanisms for sensor networks and is very effective to resist any adversary-s attempt to be included in a legitimate group in the network.Comment: 6 page

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    The Bus Goes Wireless: Routing-Free Data Collection with QoS Guarantees in Sensor Networks

    Get PDF
    Abstract—We present the low-power wireless bus (LWB), a new communication paradigm for QoS-aware data collection in lowpower sensor networks. The LWB maps all communication onto network floods by using Glossy, an efficient flooding architecture for wireless sensor networks. Therefore, unlike current solutions, the LWB requires no information of the network topology, and inherently supports networks with mobile nodes and multiple data sinks. A LWB prototype implemented in Contiki guarantees bounded end-to-end communication delay and duplicate-free, inorder packet delivery—key QoS requirements in many control and mission-critical applications. Experiments on two testbeds demonstrate that the LWB prototype outperforms state-of-theart data collection and link layer protocols, in terms of reliability and energy efficiency. For instance, we measure an average radio duty cycle of 1.69 % and an overall data yield of 99.97 % in a typical data collection scenario with 85 sensor nodes on Twist. I
    corecore