449 research outputs found

    Optimization of Regular Path Queries in Graph Databases

    Get PDF
    Regular path queries offer a powerful navigational mechanism in graph databases. Recently, there has been renewed interest in such queries in the context of the Semantic Web. The extension of SPARQL in version 1.1 with property paths offers a type of regular path query for RDF graph databases. While eminently useful, such queries are difficult to optimize and evaluate efficiently, however. We design and implement a cost-based optimizer we call Waveguide for SPARQL queries with property paths. Waveguide builds a query planwhich we call a waveplan (WP)which guides the query evaluation. There are numerous choices in the con- struction of a plan, and a number of optimization methods, so the space of plans for a query can be quite large. Execution costs of plans for the same query can vary by orders of magnitude with the best plan often offering excellent performance. A WPs costs can be estimated, which opens the way to cost-based optimization. We demonstrate that Waveguide properly subsumes existing techniques and that the new plans it adds are relevant. We analyze the effective plan space which is enabled by Waveguide and design an efficient enumerator for it. We implement a pro- totype of a Waveguide cost-based optimizer on top of an open-source relational RDF store. Finally, we perform a comprehensive performance study of the state of the art for evaluation of SPARQL property paths and demonstrate the significant performance gains that Waveguide offers

    Theoretically-Efficient and Practical Parallel DBSCAN

    Full text link
    The DBSCAN method for spatial clustering has received significant attention due to its applicability in a variety of data analysis tasks. There are fast sequential algorithms for DBSCAN in Euclidean space that take O(nlogn)O(n\log n) work for two dimensions, sub-quadratic work for three or more dimensions, and can be computed approximately in linear work for any constant number of dimensions. However, existing parallel DBSCAN algorithms require quadratic work in the worst case, making them inefficient for large datasets. This paper bridges the gap between theory and practice of parallel DBSCAN by presenting new parallel algorithms for Euclidean exact DBSCAN and approximate DBSCAN that match the work bounds of their sequential counterparts, and are highly parallel (polylogarithmic depth). We present implementations of our algorithms along with optimizations that improve their practical performance. We perform a comprehensive experimental evaluation of our algorithms on a variety of datasets and parameter settings. Our experiments on a 36-core machine with hyper-threading show that we outperform existing parallel DBSCAN implementations by up to several orders of magnitude, and achieve speedups by up to 33x over the best sequential algorithms

    Efficiently and Transparently Maintaining High SIMD Occupancy in the Presence of Wavefront Irregularity

    Get PDF
    Demand is increasing for high throughput processing of irregular streaming applications; examples of such applications from scientific and engineering domains include biological sequence alignment, network packet filtering, automated face detection, and big graph algorithms. With wide SIMD, lightweight threads, and low-cost thread-context switching, wide-SIMD architectures such as GPUs allow considerable flexibility in the way application work is assigned to threads. However, irregular applications are challenging to map efficiently onto wide SIMD because data-dependent filtering or replication of items creates an unpredictable data wavefront of items ready for further processing. Straightforward implementations of irregular applications on a wide-SIMD architecture are prone to load imbalance and reduced occupancy, while more sophisticated implementations require advanced use of parallel GPU operations to redistribute work efficiently among threads. This dissertation will present strategies for addressing the performance challenges of wavefront- irregular applications on wide-SIMD architectures. These strategies are embodied in a developer framework called Mercator that (1) allows developers to map irregular applications onto GPUs ac- cording to the streaming paradigm while abstracting from low-level data movement and (2) includes generalized techniques for transparently overcoming the obstacles to high throughput presented by wavefront-irregular applications on a GPU. Mercator forms the centerpiece of this dissertation, and we present its motivation, performance model, implementation, and extensions in this work

    An O(n) time discrete relaxation architecture for real-time processing of the consistent labeling problem

    Get PDF
    technical reportDiscrete relaxation techniques have proven useful in solving a wide range of problems in digital signal and digital image processing, artificial intelligence, operations research, and machine vision. Much work has been devoted to finding efficient hardware architectures. This paper shows that a conventional hardware design for a Discrete Relaxation Algorithm (DRA) suffers from 0(n2m3 ) time complexity and Oinhn2) space complexity. By reformulating DRA into a parallel computational tree and using a multiple tree-root pipelining scheme, time complexity is reduced to O(nm), while the space complexity is reduced by a factor of 2. For certain relaxation processing, the space complexity can even be decreased to O(nm). Furthermore, a technique for dynamic configuring an architectural wavefront is used which leads to an O(n) time highly configurable DRA3 architecture

    A Bayesian framework for optimal motion planning with uncertainty

    Get PDF
    Modeling robot motion planning with uncertainty in a Bayesian framework leads to a computationally intractable stochastic control problem. We seek hypotheses that can justify a separate implementation of control, localization and planning. In the end, we reduce the stochastic control problem to path- planning in the extended space of poses x covariances; the transitions between states are modeled through the use of the Fisher information matrix. In this framework, we consider two problems: minimizing the execution time, and minimizing the final covariance, with an upper bound on the execution time. Two correct and complete algorithms are presented. The first is the direct extension of classical graph-search algorithms in the extended space. The second one is a back-projection algorithm: uncertainty constraints are propagated backward from the goal towards the start state
    corecore