83 research outputs found

    Netlist Decomposition and Candidate Generation for Analog IC Routing

    Get PDF
    Netlist decomposition and candidate generation is a non-conventional approach in the routing stage of the place and route (PnR) flow. While there has been significant research and advancement in the digital domain for automation with respect to this as well as other techniques, very little work has been done in the analog domain due to its complex constraints and specific requirements. With this proposed method, the most common requirements of Analog circuits are taken into consideration to provide candidate routes for netlists of analog Integrated Chips (IC). Netlist decomposition is an important stage of breaking down multi-pin nets into two-pin nets by adding additional nodes for each net. The proposed method takes into account blockages and constraints such as symmetry and bends to develop a new algorithm using Steiner trees and Hanan grids to generate optimal Steiner points. This method also breaks down multi-pin nets to 3-pin nets which reduces the wirelength and computations significantly. The decomposed net segments are run through Dijkstra algorithm to generate multiple candidates and an Integer Linear programming (ILP) solver is used to pick the best candidates that follow all the constraints and design rules. The experimental results show that overall wirelength is reduced by 5.16% while using 3-pin net decomposition when compared to 2-pin net decomposition. There is also a reduction in the number of metal layers used and the number of Steiner points generated. The method shows lesser computations when compared to other decomposition techniques as it avoids multiple reroutes to obtain Design Rule Check (DRC) clean routes

    Netlist Decomposition and Candidate Generation for Analog IC Routing

    Get PDF
    Netlist decomposition and candidate generation is a non-conventional approach in the routing stage of the place and route (PnR) flow. While there has been significant research and advancement in the digital domain for automation with respect to this as well as other techniques, very little work has been done in the analog domain due to its complex constraints and specific requirements. With this proposed method, the most common requirements of Analog circuits are taken into consideration to provide candidate routes for netlists of analog Integrated Chips (IC). Netlist decomposition is an important stage of breaking down multi-pin nets into two-pin nets by adding additional nodes for each net. The proposed method takes into account blockages and constraints such as symmetry and bends to develop a new algorithm using Steiner trees and Hanan grids to generate optimal Steiner points. This method also breaks down multi-pin nets to 3-pin nets which reduces the wirelength and computations significantly. The decomposed net segments are run through Dijkstra algorithm to generate multiple candidates and an Integer Linear programming (ILP) solver is used to pick the best candidates that follow all the constraints and design rules. The experimental results show that overall wirelength is reduced by 5.16% while using 3-pin net decomposition when compared to 2-pin net decomposition. There is also a reduction in the number of metal layers used and the number of Steiner points generated. The method shows lesser computations when compared to other decomposition techniques as it avoids multiple reroutes to obtain Design Rule Check (DRC) clean routes

    Shortest Paths and Steiner Trees in VLSI Routing

    Get PDF
    Routing is one of the major steps in very-large-scale integration (VLSI) design. Its task is to find disjoint wire connections between sets of points on a chip, subject to numerous constraints. This problem is solved in a two-stage approach, which consists of so-called global and detailed routing steps. For each set of metal components to be connected, global routing reduces the search space by computing corridors in which detailed routing sequentially determines the desired connections as shortest paths. In this thesis, we present new theoretical results on Steiner trees and shortest paths, the two main mathematical concepts in routing. In the practical part, we give computational results of BonnRoute, a VLSI routing tool developed at the Research Institute for Discrete Mathematics at the University of Bonn. Interconnect signal delays are becoming increasingly important in modern chip designs. Therefore, the length of paths or direct delay measures should be taken into account when constructing rectilinear Steiner trees. We consider the problem of finding a rectilinear Steiner minimum tree (RSMT) that --- as a secondary objective --- minimizes a signal delay related objective. Given a source we derive some structural properties of RSMTs for which the weighted sum of path lengths from the source to the other terminals is minimized. Also, we present an exact algorithm for constructing RSMTs with weighted sum of path lengths as secondary objective, and a heuristic for various secondary objectives. Computational results for industrial designs are presented. We further consider the problem of finding a shortest rectilinear Steiner tree in the plane in the presence of rectilinear obstacles. The Steiner tree is allowed to run over obstacles; however, if it intersects an obstacle, then no connected component of the induced subtree must be longer than a given fixed length. This kind of length restriction is motivated by its application in VLSI routing where a large Steiner tree requires the insertion of repeaters which must not be placed on top of obstacles. We show that there are optimal length-restricted Steiner trees with a special structure. In particular, we prove that a certain graph (called augmented Hanan grid) always contains an optimal solution. Based on this structural result, we give an approximation scheme for the special case that all obstacles are of rectangular shape or are represented by at most a constant number of edges. Turning to the shortest paths problem, we present a new generic framework for Dijkstra's algorithm for finding shortest paths in digraphs with non-negative integral edge lengths. Instead of labeling individual vertices, we label subgraphs which partition the given graph. Much better running times can be achieved if the number of involved subgraphs is small compared to the order of the original graph and the shortest path problems restricted to these subgraphs is computationally easy. As an application we consider the VLSI routing problem, where we need to find millions of shortest paths in partial grid graphs with billions of vertices. Here, the algorithm can be applied twice, once in a coarse abstraction (where the labeled subgraphs are rectangles), and once in a detailed model (where the labeled subgraphs are intervals). Using the result of the first algorithm to speed up the second one via goal-oriented techniques leads to considerably reduced running time. We illustrate this with the routing program BonnRoute on leading-edge industrial chips. Finally, we present computational results of BonnRoute obtained on real-world VLSI chips. BonnRoute fulfills all requirements of modern VLSI routing and has been used by IBM and its customers over many years to produce more than one thousand different chips. To demonstrate the strength of BonnRoute as a state-of-the-art industrial routing tool, we show that it performs excellently on all traditional quality measures such as wire length and number of vias, but also on further criteria of equal importance in the every-day work of the designer

    Obstacle-avoiding rectilinear Steiner tree.

    Get PDF
    Li, Liang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (leaves 57-61).Abstract also in Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.1.1 --- Partitioning --- p.1Chapter 1.1.2 --- Floorplanning and Placement --- p.2Chapter 1.1.3 --- Routing --- p.2Chapter 1.1.4 --- Compaction --- p.3Chapter 1.2 --- Motivations --- p.3Chapter 1.3 --- Problem Formulation --- p.4Chapter 1.3.1 --- Properties of OARSMT --- p.4Chapter 1.4 --- Progress on the Problem --- p.4Chapter 1.5 --- Contributions --- p.5Chapter 1.6 --- Thesis Organization --- p.6Chapter 2 --- Literature Review on OARSMT --- p.8Chapter 2.1 --- Introduction --- p.8Chapter 2.2 --- Previous Methods --- p.9Chapter 2.2.1 --- OARSMT --- p.9Chapter 2.2.2 --- Shortest Path Problem with Blockages --- p.13Chapter 2.2.3 --- OARSMT with Delay Minimization --- p.14Chapter 2.2.4 --- OARSMT with Worst Negative Slack Maximization --- p.14Chapter 2.3 --- Comparison --- p.15Chapter 3 --- Heuristic Method --- p.17Chapter 3.1 --- Introduction --- p.17Chapter 3.2 --- Our Approach --- p.18Chapter 3.2.1 --- Handling of Multi-pin Nets --- p.18Chapter 3.2.2 --- Propagation --- p.20Chapter 3.2.3 --- Backtrack --- p.23Chapter 3.2.4 --- Finding MST --- p.26Chapter 3.2.5 --- Local Refinement Scheme --- p.26Chapter 3.3 --- Experimental Results --- p.28Chapter 3.4 --- Summary --- p.28Chapter 4 --- Exact Method --- p.32Chapter 4.1 --- Introduction --- p.32Chapter 4.2 --- Review on GeoSteiner --- p.33Chapter 4.3 --- Overview of our Approach --- p.33Chapter 4.4 --- FST with Virtual Pins --- p.34Chapter 4.4.1 --- Definition of FST --- p.34Chapter 4.4.2 --- Notations --- p.36Chapter 4.4.3 --- Properties of FST with Virtual Pins --- p.36Chapter 4.5 --- Generation of FST with Virtual Pins --- p.46Chapter 4.5.1 --- Generation of FST with Two Pins --- p.46Chapter 4.5.2 --- Generation of FST with 3 or More Pins --- p.48Chapter 4.6 --- Concatenation of FSTs with Virtual Pins --- p.50Chapter 4.7 --- Experimental Results --- p.52Chapter 4.8 --- Summary --- p.53Chapter 5 --- Conclusion --- p.55Bibliography --- p.6

    Netlist Decomposition and Candidate Generation for Analog IC Routing

    Get PDF
    Netlist decomposition and candidate generation is a non-conventional approach in the routing stage of the place and route (PnR) flow. While there has been significant research and advancement in the digital domain for automation with respect to this as well as other techniques, very little work has been done in the analog domain due to its complex constraints and specific requirements. With this proposed method, the most common requirements of Analog circuits are taken into consideration to provide candidate routes for netlists of analog Integrated Chips (IC). Netlist decomposition is an important stage of breaking down multi-pin nets into two-pin nets by adding additional nodes for each net. The proposed method takes into account blockages and constraints such as symmetry and bends to develop a new algorithm using Steiner trees and Hanan grids to generate optimal Steiner points. This method also breaks down multi-pin nets to 3-pin nets which reduces the wirelength and computations significantly. The decomposed net segments are run through Dijkstra algorithm to generate multiple candidates and an Integer Linear programming (ILP) solver is used to pick the best candidates that follow all the constraints and design rules. The experimental results show that overall wirelength is reduced by 5.16% while using 3-pin net decomposition when compared to 2-pin net decomposition. There is also a reduction in the number of metal layers used and the number of Steiner points generated. The method shows lesser computations when compared to other decomposition techniques as it avoids multiple reroutes to obtain Design Rule Check (DRC) clean routes

    Netlist Decomposition and Candidate Generation for Analog IC Routing

    Get PDF
    Netlist decomposition and candidate generation is a non-conventional approach in the routing stage of the place and route (PnR) flow. While there has been significant research and advancement in the digital domain for automation with respect to this as well as other techniques, very little work has been done in the analog domain due to its complex constraints and specific requirements. With this proposed method, the most common requirements of Analog circuits are taken into consideration to provide candidate routes for netlists of analog Integrated Chips (IC). Netlist decomposition is an important stage of breaking down multi-pin nets into two-pin nets by adding additional nodes for each net. The proposed method takes into account blockages and constraints such as symmetry and bends to develop a new algorithm using Steiner trees and Hanan grids to generate optimal Steiner points. This method also breaks down multi-pin nets to 3-pin nets which reduces the wirelength and computations significantly. The decomposed net segments are run through Dijkstra algorithm to generate multiple candidates and an Integer Linear programming (ILP) solver is used to pick the best candidates that follow all the constraints and design rules. The experimental results show that overall wirelength is reduced by 5.16% while using 3-pin net decomposition when compared to 2-pin net decomposition. There is also a reduction in the number of metal layers used and the number of Steiner points generated. The method shows lesser computations when compared to other decomposition techniques as it avoids multiple reroutes to obtain Design Rule Check (DRC) clean routes

    On the construction of rectilinear Steiner minimum trees among obstacles.

    Get PDF
    Rectilinear Steiner minimum tree (RSMT) problem asks for a shortest tree spanning a set of given terminals using only horizontal and vertical lines. Construction of RSMTs is an important problem in VLSI physical design. It is useful for both the detailed and global routing steps, and it is important for congestion, wire length and timing estimations during the floorplanning or placement step. The original RSMT problem assumes no obstacle in the routing region. However, in today’s designs, there can be many routing blockages, like macro cells, IP blocks and pre-routed nets. Therefore, the RSMT problem with blockages has become an important problem in practice and has received a lot of research attentions in the recent years. The RSMT problem has been shown to be NP-complete, and the introduction of obstacles has made this problem even more complicated.In the first part of this thesis, we propose an exact algorithm, called ObSteiner, for the construction of obstacle-avoiding RSMT (OARSMT) in the presence of complex rectilinear obstacles. Our work is developed based on the GeoSteiner approach in which full Steiner trees (FSTs) are first constructed and then combined into a RSMT. We modify and extend the algorithm to allow rectilinear obstacles in the routing region. We prove that by adding virtual terminals to each routing obstacle, the FSTs in the presence of obstacles will follow some very simple structures. A two-phase approach is then developed for the construction of OARSMTs. In the first phase, we generate a set of FSTs. In the second phase, the FSTs generated in the first phase are used to construct an OARSMT. Experimental results show that ObSteiner is able to handle problems with hundreds of terminals in the presence of up to two thousand obstacles, generating an optimal solution in a reasonable amount of time.In the second part of this thesis, we propose the OARSMT problem with slew constraints over obstacles. In modern VLSI designs, obstacles usually block a fraction of metal layers only making it possible to route over the obstacles. However, since buffers cannot be place on top of any obstacle, we should avoid routing long wires over obstacles. Therefore, we impose the slew constraints for the interconnects that are routed over obstacles. To deal with this problem, we analyze the optimal solutions and prove that the internal trees with signal direction over an obstacle will follow some simple structures. Based on this observation, we propose an exact algorithm, called ObSteiner with slew constraints, that is able to find an optimal solution in the extended Hanan grid. Experimental results show that the proposed algorithm is able to reduce nearly 5% routing resources on average in comparison with the OARSMT algorithm and is also very much faster.Huang, Tao.Thesis (Ph.D.)--Chinese University of Hong Kong, 2013.Includes bibliographical references (leaves [137]-144).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- The rectilinear Steiner minimum tree problem --- p.1Chapter 1.2 --- Applications --- p.3Chapter 1.3 --- Obstacle consideration --- p.5Chapter 1.4 --- Thesis outline --- p.6Chapter 1.5 --- Thesis contributions --- p.8Chapter 2 --- Background --- p.11Chapter 2.1 --- RSMT algorithms --- p.11Chapter 2.1.1 --- Heuristics --- p.11Chapter 2.1.2 --- Exact algorithms --- p.20Chapter 2.2 --- OARSMT algorithms --- p.30Chapter 2.2.1 --- Heuristics --- p.30Chapter 2.2.2 --- Exact algorithms --- p.33Chapter 3 --- ObSteiner - an exact OARSMT algorithm --- p.37Chapter 3.1 --- Introduction --- p.38Chapter 3.2 --- Preliminaries --- p.39Chapter 3.2.1 --- OARSMT problem formulation --- p.39Chapter 3.2.2 --- An exact RSMT algorithm --- p.40Chapter 3.3 --- OARSMT decomposition --- p.42Chapter 3.3.1 --- Full Steiner trees among complex obstacles --- p.42Chapter 3.3.2 --- More Theoretical results --- p.59Chapter 3.4 --- OARSMT construction --- p.62Chapter 3.4.1 --- FST generation --- p.62Chapter 3.4.2 --- Pruning of FSTs --- p.66Chapter 3.4.3 --- FST concatenation --- p.71Chapter 3.5 --- Incremental construction --- p.82Chapter 3.6 --- Experiments --- p.83Chapter 4 --- ObSteiner with slew constraints --- p.97Chapter 4.1 --- Introduction --- p.97Chapter 4.2 --- Problem Formulation --- p.100Chapter 4.3 --- Overview of our approach --- p.103Chapter 4.4 --- Internal tree structures in an optimal solution --- p.103Chapter 4.5 --- Algorithm --- p.126Chapter 4.5.1 --- EFST and SCIFST generation --- p.127Chapter 4.5.2 --- Concatenation --- p.129Chapter 4.5.3 --- Incremental construction --- p.131Chapter 4.6 --- Experiments --- p.131Chapter 5 --- Conclusion --- p.135Bibliography --- p.13

    Initial detailed routing algorithms

    Get PDF
    In this work, we present a study of the problem of routing in the context of the VLSI physical synthesis flow. We study the fundamental routing algorithms such as maze routing, A*, and Steiner tree-based algorithms, as well as some global routing algorithms, namely FastRoute 4.0 and BoxRouter 2.0. We dissect some of the major state of the art initial detailed routing tools, such as RegularRoute, TritonRoute, SmartDR and Dr.CU 2.0. We also propose an initial detailed routing flow, and present an implementation of the proposed routing flow, with a track assignment technique that models the problem as an instance of the maximum independent weighted set (MWIS) and utilizes integer linear programming (ILP) as a solver. The implementation of the proposed initial detailed routing flow also includes an implementation of multiple-source and multiple-target A* for terminal andnet connection with adjustable rules and weights. Finally, we also present a study of the results obtained by the implementation of the proposed initial detailed routing flow and a comparison with the ISPD 2019 contest winners, considering the ISPD 2019 and benchmark suite and evaluation tools.Neste trabalho, apresentamos um estudo do problema de roteamento no contexto do fluxo de síntese física de circuitos integrados VLSI. Nós estudamos algoritmos de roteamento fundamentais como roteamento de labirinto, A* e baseados em árvores de Steiner, além de alguns algoritmos de roteamento global como FastRoute 4.0 e BoxRouter 2.0. Nós dissecamos alguns dos principais trabalhos de roteamento detalhado inicial do estado da arte, como RegularRoute, TritonRoute, SmartDR e Dr.CU 2.0. Também propomos um fluxo de roteamento detalhado inicial, e apresentamos uma implementação do fluxo de roteametno proposto, com uma técnica de assinalamento de trilhas que modela o problema como uma instância do problema do conjunto independente de peso máximo e usa programação linear inteira como um resolvedor. A implementação do fluxo de rotemaento detalhado inicial proposto também inclui uma implementação de um A* com múltiplas fontes e múltiplos destinos para conexão de terminais e redes, com regras e pesos ajustáveis. Por fim, nós apresentamos um estudo dos resultados obtidos pela implementação do fluxo de roteamento detalhado inicial proposto e comparamos com os vencedores do ISPD 2019 contest considerando a suíte de teste e ferramentas de avaliação do ISPD 2019
    • …
    corecore