2,553 research outputs found

    Efficient algorithms for reconfiguration in VLSI/WSI arrays

    Get PDF
    The issue of developing efficient algorithms for reconfiguring processor arrays in the presence of faulty processors and fixed hardware resources is discussed. The models discussed consist of a set of identical processors embedded in a flexible interconnection structure that is configured in the form of a rectangular grid. An array grid model based on single-track switches is considered. An efficient polynomial time algorithm is proposed for determining feasible reconfigurations for an array with a given distribution of faulty processors. In the process, it is shown that the set of conditions in the reconfigurability theorem is not necessary. A polynomial time algorithm is developed for finding feasible reconfigurations in an augmented single-track model and in array grid models with multiple-track switche

    Yield Enhancement of Digital Microfluidics-Based Biochips Using Space Redundancy and Local Reconfiguration

    Full text link
    As microfluidics-based biochips become more complex, manufacturing yield will have significant influence on production volume and product cost. We propose an interstitial redundancy approach to enhance the yield of biochips that are based on droplet-based microfluidics. In this design method, spare cells are placed in the interstitial sites within the microfluidic array, and they replace neighboring faulty cells via local reconfiguration. The proposed design method is evaluated using a set of concurrent real-life bioassays.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    A self-reconfigurable hardware architecture for mesh arrays using single/double vertical track switches

    Get PDF
    科研費報告書収録論文(課題番号:14380138・基盤研究(B)(2)・14~16/研究代表者:堀口, 進 死亡(奥様 堀口悦子)/超高速ノンブロック・ネットワーク構成方式に関する研究

    Testing microelectronic biofluidic systems

    Get PDF
    According to the 2005 International Technology Roadmap for Semiconductors, the integration of emerging nondigital CMOS technologies will require radically different test methods, posing a major challenge for designers and test engineers. One such technology is microelectronic fluidic (MEF) arrays, which have rapidly gained importance in many biological, pharmaceutical, and industrial applications. The advantages of these systems, such as operation speed, use of very small amounts of liquid, on-board droplet detection, signal conditioning, and vast digital signal processing, make them very promising. However, testable design of these devices in a mass-production environment is still in its infancy, hampering their low-cost introduction to the market. This article describes analog and digital MEF design and testing method

    Low power techniques for video compression

    Get PDF
    This paper gives an overview of low-power techniques proposed in the literature for mobile multimedia and Internet applications. Exploitable aspects are discussed in the behavior of different video compression tools. These power-efficient solutions are then classified by synthesis domain and level of abstraction. As this paper is meant to be a starting point for further research in the area, a lowpower hardware & software co-design methodology is outlined in the end as a possible scenario for video-codec-on-a-chip implementations on future mobile multimedia platforms

    Efficient reconfigurable techniques for VLSI arrays with 6-port switches

    Get PDF
    This paper proposes an efficient techniques to reconfigure a two-dimensional degradable very large scale integration/wafer scale integration (VLSI/WSI) array under the row and column routing constraints, which has been shown to be NP-complete. The proposed VLSI/WSI array consists of identical processing elements such as processors or memory cells embedded in a 6-port switch lattice in the form of a rectangular grid. It has been shown that the proposed VLSI structure with 6-port switches eliminates the need to incorporate internal bypass within processing elements and leads to notable increase in the harvest when compared with the one using 4-port switches. A new greedy rerouting algorithm and compensation approaches are also proposed to maximize harvest through reconfiguration. Experimental results show that the proposed VLSI array with 6-port switches consistently outperforms the most efficient alternative, proposed in literature, toward maximizing the harvest in the presence of fault processing elements

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints
    corecore