251 research outputs found

    Vulnerability of LTE to Hostile Interference

    Full text link
    LTE is well on its way to becoming the primary cellular standard, due to its performance and low cost. Over the next decade we will become dependent on LTE, which is why we must ensure it is secure and available when we need it. Unfortunately, like any wireless technology, disruption through radio jamming is possible. This paper investigates the extent to which LTE is vulnerable to intentional jamming, by analyzing the components of the LTE downlink and uplink signals. The LTE physical layer consists of several physical channels and signals, most of which are vital to the operation of the link. By taking into account the density of these physical channels and signals with respect to the entire frame, as well as the modulation and coding schemes involved, we come up with a series of vulnerability metrics in the form of jammer to signal ratios. The ``weakest links'' of the LTE signals are then identified, and used to establish the overall vulnerability of LTE to hostile interference.Comment: 4 pages, see below for citation. M. Lichtman, J. Reed, M. Norton, T. Clancy, "Vulnerability of LTE to Hostile Interference'', IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec 201

    A Novel Device-to-Device Discovery Scheme for Underlay Cellular Networks

    Full text link
    Tremendous growing demand for high data rate services such as video, gaming and social networking in wireless cellular systems, attracted researchers' attention to focus on developing proximity services. In this regard, device-to-device (D2D) communications as a promising technology for future cellular systems, plays crucial rule. The key factor in D2D communication is providing efficient peer discovery mechanisms in ultra dense networks. In this paper, we propose a centralized D2D discovery scheme by employing a signaling algorithm to exchange D2D discovery messages between network entities. In this system, potential D2D pairs share uplink cellular users' resources with collision detection, to initiate a D2D links. Stochastic geometry is used to analyze system performance in terms of success probability of the transmitted signal and minimum required time slots for the proposed discovery scheme. Extensive simulations are used to evaluate the proposed system performance.Comment: Accepted for publication in 25'th Iranian Conference on Electrical Engineering (ICEE2017

    Models of Control Channels in the LTE System

    Get PDF
    Dizertační práce se zabývá zpracováním signálu fyzických řídicích kanálů systému LTE a vyšetřováním bitové chybovosti při přenosu řídicí informace z vysílače do přijímače v závislosti na podmínkách příjmu. Práce je rozdělena do dvou hlavních částí. První část práce je zaměřena na simulaci přenosu řídicí informace LTE v základním pásmu. Jsou zde prezentovány vytvořené simulátory řídicích kanálů ve směru uplink i downlink. Simulace jsou provedeny pro všechny druhy nastavení systému a základní modely přenosového prostředí. Jsou zde popsány výsledky vlivu použití MIMO technologií na kvalitu příjmu řídicí informace především v únikových kanálech. Druhá část práce je zaměřena na možnost nasazení systému LTE ve sdíleném pásmu ISM (2.4 GHz). Jsou zde představeny základní koncepce použití, na jejichž základě je vytvořen scénář simulací. Kapitola dále popisuje tvorbu simulátoru koexistence LTE a systému Wi-Fi v přeneseném pásmu ISM 2.4GHz. Jsou zde uvedeny výsledky simulací koexistence LTE a rušivého systému Wi-Fi provedených dle vytvořeného scénáře. Výsledky simulací koexistence LTE a Wi-Fi jsou ověřeny měřením v laboratorních podmínkách. Toto porovnání je důležité z hlediska optimalizace simulátoru koexistence. Dle výsledků obou typů simulací a měření jsou stanovena provozní doporučení, která mají přispět k bezpečnému a spolehlivému vysílání a příjmu řídicích informací LTE i při nepříznivých podmínkách příjmu.The doctoral thesis is focused on a signal processing in the LTE physical control channels and performance analysis of control information transmission according to receiving conditions. The thesis is divided into two parts. The first part deals with simulation of the transmission of control information in baseband. The created simulators for uplink and downlink are presented. The simulations are performed for all possible system settings and various channel models. The MIMO influence on a quality of control information reception under fading channels is also presented. The second part of the thesis is focused on LTE utilization in shared channel ISM (2.4 GHz). The basic LTE application concept for ISM band is presented. This concept is fundamental to created simulation scenario. The chapter also presents the LTE and Wi-Fi coexistence simulator in 2.4 GHz ISM passband. The coexistence simulation are presented according to simulation scenario and the results are shown. The simulated coexistence analysis results are verified in laboratory environment. The comparison of the simulated and the measured coexistence analysis results is crucial for further optimization of the coexistence simulator. Recommendations for optimal and reliable operation of LTE are specified according to the simulated and the measured results. Recommendations should be useful to the reliable transmission of LTE control information in bad receiving conditions.

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    Desenvolvimento em VHDL da camada física de um transmissor 4G

    Get PDF
    The LTE and LTE-Advanced technologies are standards to the fourth mobile generation, or 4G. The planned successor of this mobile generation is 5G, which will be based on 5G-New Radio (5G-NR) standard. The 5G technology is on an initial phase of deployment. One of its features that are essential in this initial phase is the support for 4G communications, because many of the mobile devices currently in use do not have support for 5G communications. This support is made possible if there is an implementation where 4G and 5G networks both coexist with each other. In the future, with the increasing usage of mobile devices with 5G support, there will be a gradual migration of 4G networks to 5G, releasing frequency spectrums currently reserved for 4G so that those can be occupied by 5G. The data transmissions in 4G require quite a lot of the processing capacity of all systems within the mobile network. For 5G, the data transmissions, in terms of traffic volume and speed, are larger than 4G transmissions, requiring new systems to be implemented, to allow the processing of larger quantities of data. Implementation in hardware of a 4G Uplink transmission chain, at the physical layer level PHY-Low, will allow the optimization of certain processes that a CPU could handle, reducing CPU usage and time spent on processing. The use of FPGAs makes this possible, as FPGAs can perform parallel tasks simultaneously and perform digital signal processing. The purpose of this dissertation is the modelling of a 4G LTE Uplink transmitter, at the physical layer level. Then, synthesizable VHDL code is generated from the modeled system, which can be eventually implemented in FPGAs. The modelling of the system is made in Simulink, a tool inside the MATLAB software, which allows for modelling, simulating and analyzing systems in a graphic environment and has applications in control systems and digital signal processing. The VHDL code is generated from HDL Coder, another tool in MATLAB software, generating synthesizable Verilog and VHDL code, from the MATLAB functions and Simulink models. The results obtained of processed data from the system are analyzed and validated, comparing the reference data generated from Wireless Waveform Generator toolbox in MATLAB.A tecnologia LTE e LTE-Advanced são standards da quarta geração de comunicações moveis atuais, ou 4G. Futuramente, o 5G marca a próxima geração de comunicações moveis, segundo o standard 5G-New Radio (5GNR). A tecnologia 5G encontra-se numa fase inicial de implementação, sendo que nessa fase uma das suas características fundamentais é o suporte para comunicações 4G, pois muitos dos dispositivos moveis usados atualmente não possuem suporte para comunicações 5G. Este suporte para 4G é tornado possível, se for feita uma implementação onde as redes 4G e 5G se encontrem em coexistência. No futuro, com o aumento do uso de dispositivos moveis com suporte para 5G, haverá uma migração gradual de redes 4G para 5G, libertando os espectros de frequências reservados atualmente para o 4G para serem ocupados pelo 5G. As transmissões de dados no 4G exigem bastante da capacidade de processamento de todos os sistemas da rede movel. Para o 5G, as transmissões de dados tem volumes de tráfego e velocidades maiores do que as transmissões de dados 4G, fazendo com que novos sistemas tenham de ser implementados para poder processar maiores quantidades de dados. A implementação em hardware da cadeia de transmissão 4G Uplink, ao nível da camada física PHY-Low, permitirá a otimização de certos processos que um CPU poderia lidar, diminuindo o uso do CPU e o tempo gasto em processamento. O uso de FPGAs torna isto possível, tendo em conta que podem realizar tarefas em paralelo, em modo simultâneo, e fazer processamento digital de sinal. O objetivo desta dissertação assenta na modelação de um transmissor 4G LTE Uplink, ao nível da camada física. Depois, é gerado código VHDL sintetizável a partir do sistema modelado, que eventualmente será implementada em FPGAs. A modelação do sistema é feito em Simulink, uma ferramenta no software do MATLAB, que permite modelar, simular e analisar sistemas num ambiente gráfico e tem aplicações para sistemas de controlo e processamento digital de sinal. O código VHDL é gerado a partir do HDL Coder, uma outra ferramenta no software do MATLAB, que gera Verilog e VHDL sintetizáveis, a partir de funções MATLAB e de modelos Simulink. Os resultados obtidos dos dados processados pelo sistema são analisados e validados, comparando com os dados de referência obtidos a partir da toolbox Wireless Waveform Generator do MATLAB.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore