9,974 research outputs found

    Innovative Evaluation System – IESM: An Architecture for the Database Management System for Mobile Application

    Get PDF
    As the mobile applications are constantly facing a rapid development in the recent years especially in the academic environment such as student response system [1-8] used in universities and other educational institutions; there has not been reported an effective and scalable Database Management System to support fast and reliable data storage and retrieval. This paper presents Database Management Architecture for an Innovative Evaluation System based on Mobile Learning Applications. The need for a relatively stable, independent and extensible data model for faster data storage and retrieval is analyzed and investigated. It concludes by emphasizing further investigation for high throughput so as to support multimedia data such as video clips, images and documents

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Techniques for effective and efficient fire detection from social media images

    Get PDF
    Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFDnR), which combines feature extractor and evaluation functions to support instance-based learning, (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences -- the FlickrFire dataset, and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFDnR was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.Comment: 12 pages, Proceedings of the International Conference on Enterprise Information Systems. Specifically: Marcos Bedo, Gustavo Blanco, Willian Oliveira, Mirela Cazzolato, Alceu Costa, Jose Rodrigues, Agma Traina, Caetano Traina, 2015, Techniques for effective and efficient fire detection from social media images, ICEIS, 34-4

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search in High-Dimensional Spaces

    Full text link
    Nearest neighbor searching of large databases in high-dimensional spaces is inherently difficult due to the curse of dimensionality. A flavor of approximation is, therefore, necessary to practically solve the problem of nearest neighbor search. In this paper, we propose a novel yet simple indexing scheme, HD-Index, to solve the problem of approximate k-nearest neighbor queries in massive high-dimensional databases. HD-Index consists of a set of novel hierarchical structures called RDB-trees built on Hilbert keys of database objects. The leaves of the RDB-trees store distances of database objects to reference objects, thereby allowing efficient pruning using distance filters. In addition to triangular inequality, we also use Ptolemaic inequality to produce better lower bounds. Experiments on massive (up to billion scale) high-dimensional (up to 1000+) datasets show that HD-Index is effective, efficient, and scalable.Comment: PVLDB 11(8):906-919, 201
    • …
    corecore