449 research outputs found

    IDENTIFICATION OF COVER SONGS USING INFORMATION THEORETIC MEASURES OF SIMILARITY

    Get PDF
    13 pages, 5 figures, 4 tables. v3: Accepted version13 pages, 5 figures, 4 tables. v3: Accepted version13 pages, 5 figures, 4 tables. v3: Accepted versio

    Hashing for Multimedia Similarity Modeling and Large-Scale Retrieval

    Get PDF
    In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based solution for audio-visual similarity modeling and apply it to the audio-visual sound source localization problem. We show that synchronized signals in audio and visual modalities demonstrate similar temporal changing patterns in certain feature spaces. We propose to use a permutation-based random hashing technique to capture the temporal order dynamics of audio and visual features by hashing them along the temporal axis into a common Hamming space. In this way, the audio-visual correlation problem is transformed into a similarity search problem in the Hamming space. Our hashing-based audio-visual similarity modeling has shown superior performances in the localization and segmentation of sounding objects in videos. The success of the permutation-based hashing method motivates us to generalize and formally define the supervised ranking-based hashing problem, and study its application to large-scale image retrieval. Specifically, we propose an effective supervised learning procedure to learn optimized ranking-based hash functions that can be used for large-scale similarity search. Compared with the randomized version, the optimized ranking-based hash codes are much more compact and discriminative. Moreover, it can be easily extended to kernel space to discover more complex ranking structures that cannot be revealed in linear subspaces. Experiments on large image datasets demonstrate the effectiveness of the proposed method for image retrieval. We further studied the ranking-based hashing method for the cross-media similarity search problem. Specifically, we propose two optimization methods to jointly learn two groups of linear subspaces, one for each media type, so that features\u27 ranking orders in different linear subspaces maximally preserve the cross-media similarities. Additionally, we develop this ranking-based hashing method in the cross-media context into a flexible hashing framework with a more general solution. We have demonstrated through extensive experiments on several real-world datasets that the proposed cross-media hashing method can achieve superior cross-media retrieval performances against several state-of-the-art algorithms. Lastly, to make better use of the supervisory label information, as well as to further improve the efficiency and accuracy of supervised hashing, we propose a novel multimedia discrete hashing framework that optimizes an instance-wise loss objective, as compared to the pairwise losses, using an efficient discrete optimization method. In addition, the proposed method decouples the binary codes learning and hash function learning into two separate stages, thus making the proposed method equally applicable for both single-media and cross-media search. Extensive experiments on both single-media and cross-media retrieval tasks demonstrate the effectiveness of the proposed method

    Characterizing Audio Events for Video Soundtrack Analysis

    Get PDF
    There is an entire emerging ecosystem of amateur video recordings on the internet today, in addition to the abundance of more professionally produced content. The ability to automatically scan and evaluate the content of these recordings would be very useful for search and indexing, especially as amateur content tends to be more poorly labeled and tagged than professional content. Although the visual content is often considered to be of primary importance, the audio modality contains rich information which may be very helpful in the context of video search and understanding. Any technology that could help to interpret video soundtrack data would also be applicable in a number of other scenarios, such as mobile device audio awareness, surveillance, and robotics. In this thesis we approach the problem of extracting information from these kinds of unconstrained audio recordings. Specifically we focus on techniques for characterizing discrete audio events within the soundtrack (e.g. a dog bark or door slam), since we expect events to be particularly informative about content. Our task is made more complicated by the extremely variable recording quality and noise present in this type of audio. Initially we explore the idea of using the matching pursuit algorithm to decompose and isolate components of audio events. Using these components we develop an approach for non-exact (approximate) fingerprinting as a way to search audio data for similar recurring events. We demonstrate a proof of concept for this idea. Subsequently we extend the use of matching pursuit to build an actual audio fingerprinting system, with the goal of identifying simultaneously recorded amateur videos (i.e. videos taken in the same place at the same time by different people, which contain overlapping audio). Automatic discovery of these simultaneous recordings is one particularly interesting facet of general video indexing. We evaluate this fingerprinting system on a database of 733 internet videos. Next we return to searching for features to directly characterize soundtrack events. We develop a system to detect transient sounds and represent audio clips as a histogram of the transients it contains. We use this representation for video classification over a database of 1873 internet videos. When we combine these features with a spectral feature baseline system we achieve a relative improvement of 7.5% in mean average precision over the baseline. In another attempt to devise features to better describe and compare events, we investigate decomposing audio using a convolutional form of non-negative matrix factorization, resulting in event-like spectro-temporal patches. We use the resulting representation to build an event detection system that is more robust to additive noise than a comparative baseline system. Lastly we investigate a promising feature representation that has been used by others previously to describe event-like sound effect clips. These features derive from an auditory model and are meant to capture fine time structure in sound events. We compare these features and a related but simpler feature set on the task of video classification over 9317 internet videos. We find that combinations of these features with baseline spectral features produce a significant improvement in mean average precision over the baseline

    Exploratory search through large video corpora

    Get PDF
    Activity retrieval is a growing field in electrical engineering that specializes in the search and retrieval of relevant activities and events in video corpora. With the affordability and popularity of cameras for government, personal and retail use, the quantity of available video data is rapidly outscaling our ability to reason over it. Towards the end of empowering users to navigate and interact with the contents of these video corpora, we propose a framework for exploratory search that emphasizes activity structure and search space reduction over complex feature representations. Exploratory search is a user driven process wherein a person provides a system with a query describing the activity, event, or object he is interested in finding. Typically, this description takes the implicit form of one or more exemplar videos, but it can also involve an explicit description. The system returns candidate matches, followed by query refinement and iteration. System performance is judged by the run-time of the system and the precision/recall curve of of the query matches returned. Scaling is one of the primary challenges in video search. From vast web-video archives like youtube (1 billion videos and counting) to the 30 million active surveillance cameras shooting an estimated 4 billion hours of footage every week in the United States, trying to find a set of matches can be like looking for a needle in a haystack. Our goal is to create an efficient archival representation of video corpora that can be calculated in real-time as video streams in, and then enables a user to quickly get a set of results that match. First, we design a system for rapidly identifying simple queries in large-scale video corpora. Instead of focusing on feature design, our system focuses on the spatiotemporal relationships between those features as a means of disambiguating an activity of interest from background. We define a semantic feature vocabulary of concepts that are both readily extracted from video and easily understood by an operator. As data streams in, features are hashed to an inverted index and retrieved in constant time after the system is presented with a user's query. We take a zero-shot approach to exploratory search: the user manually assembles vocabulary elements like color, speed, size and type into a graph. Given that information, we perform an initial downsampling of the archived data, and design a novel dynamic programming approach based on genome-sequencing to search for similar patterns. Experimental results indicate that this approach outperforms other methods for detecting activities in surveillance video datasets. Second, we address the problem of representing complex activities that take place over long spans of space and time. Subgraph and graph matching methods have seen limited use in exploratory search because both problems are provably NP-hard. In this work, we render these problems computationally tractable by identifying the maximally discriminative spanning tree (MDST), and using dynamic programming to optimally reduce the archive data based on a custom algorithm for tree-matching in attributed relational graphs. We demonstrate the efficacy of this approach on popular surveillance video datasets in several modalities. Finally, we design an approach for successive search space reduction in subgraph matching problems. Given a query graph and archival data, our algorithm iteratively selects spanning trees from the query graph that optimize the expected search space reduction at each step until the archive converges. We use this approach to efficiently reason over video surveillance datasets, simulated data, as well as large graphs of protein data

    Hash Functions for Episodic Recognition and Retrieval

    Get PDF
    Episodic memory systems for artificially intelligent agents must cope with an ever-growing episodic memory store. This paper presents an approach for minimizing the size of the store by using specialized hash functions to convert each memory into a relatively short binary code. A set of desiderata for such hash functions are presented including locale sensitivity and reversibility. The paper then introduces multiple approaches for such functions and compares their effectiveness

    Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models

    Get PDF
    Many complex multi-target prediction problems that concern large target spaces are characterised by a need for efficient prediction strategies that avoid the computation of predictions for all targets explicitly. Examples of such problems emerge in several subfields of machine learning, such as collaborative filtering, multi-label classification, dyadic prediction and biological network inference. In this article we analyse efficient and exact algorithms for computing the top-KK predictions in the above problem settings, using a general class of models that we refer to as separable linear relational models. We show how to use those inference algorithms, which are modifications of well-known information retrieval methods, in a variety of machine learning settings. Furthermore, we study the possibility of scoring items incompletely, while still retaining an exact top-K retrieval. Experimental results in several application domains reveal that the so-called threshold algorithm is very scalable, performing often many orders of magnitude more efficiently than the naive approach

    Soundtrack recommendation for images

    Get PDF
    The drastic increase in production of multimedia content has emphasized the research concerning its organization and retrieval. In this thesis, we address the problem of music retrieval when a set of images is given as input query, i.e., the problem of soundtrack recommendation for images. The task at hand is to recommend appropriate music to be played during the presentation of a given set of query images. To tackle this problem, we formulate a hypothesis that the knowledge appropriate for the task is contained in publicly available contemporary movies. Our approach, Picasso, employs similarity search techniques inside the image and music domains, harvesting movies to form a link between the domains. To achieve a fair and unbiased comparison between different soundtrack recommendation approaches, we proposed an evaluation benchmark. The evaluation results are reported for Picasso and the baseline approach, using the proposed benchmark. We further address two efficiency aspects that arise from the Picasso approach. First, we investigate the problem of processing top-K queries with set-defined selections and propose an index structure that aims at minimizing the query answering latency. Second, we address the problem of similarity search in high-dimensional spaces and propose two enhancements to the Locality Sensitive Hashing (LSH) scheme. We also investigate the prospects of a distributed similarity search algorithm based on LSH using the MapReduce framework. Finally, we give an overview of the PicasSound|a smartphone application based on the Picasso approach.Der drastische Anstieg von verfügbaren Multimedia-Inhalten hat die Bedeutung der Forschung über deren Organisation sowie Suche innerhalb der Daten hervorgehoben. In dieser Doktorarbeit betrachten wir das Problem der Suche nach geeigneten Musikstücken als Hintergrundmusik für Diashows. Wir formulieren die Hypothese, dass die für das Problem erforderlichen Kenntnisse in öffentlich zugänglichen, zeitgenössischen Filmen enthalten sind. Unser Ansatz, Picasso, verwendet Techniken aus dem Bereich der Ähnlichkeitssuche innerhalb von Bild- und Musik-Domains, um basierend auf Filmszenen eine Verbindung zwischen beliebigen Bildern und Musikstücken zu lernen. Um einen fairen und unvoreingenommenen Vergleich zwischen verschiedenen Ansätzen zur Musikempfehlung zu erreichen, schlagen wir einen Bewertungs-Benchmark vor. Die Ergebnisse der Auswertung werden, anhand des vorgeschlagenen Benchmarks, für Picasso und einen weiteren, auf Emotionen basierenden Ansatz, vorgestellt. Zusätzlich behandeln wir zwei Effizienzaspekte, die sich aus dem Picasso Ansatz ergeben. (i) Wir untersuchen das Problem der Ausführung von top-K Anfragen, bei denen die Ergebnismenge ad-hoc auf eine kleine Teilmenge des gesamten Indexes eingeschränkt wird. (ii) Wir behandeln das Problem der Ähnlichkeitssuche in hochdimensionalen Räumen und schlagen zwei Erweiterungen des Lokalitätssensitiven Hashing (LSH) Schemas vor. Zusätzlich untersuchen wir die Erfolgsaussichten eines verteilten Algorithmus für die Ähnlichkeitssuche, der auf LSH unter Verwendung des MapReduce Frameworks basiert. Neben den vorgenannten wissenschaftlichen Ergebnissen beschreiben wir ferner das Design und die Implementierung von PicassSound, einer auf Picasso basierenden Smartphone-Anwendung

    k-NN 검색 및 k-NN 그래프 생성을 위한 고속 근사 알고리즘

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 이상구.Finding k-nearest neighbors (k-NN) is an essential part of recommeder systems, information retrieval, and many data mining and machine learning algorithms. However, there are two main problems in finding k-nearest neighbors: 1) Existing approaches require a huge amount of time when the number of objects or dimensions is scale up. 2) The k-NN computation methods do not show the consistent performance over different search tasks and types of data. In this dissertation, we present fast and versatile algorithms for finding k-nearest neighbors in order to cope with these problems. The main contributions are summarized as follows: first, we present an efficient and scalable algorithm for finding an approximate k-NN graph by filtering node pairs whose large value dimensions do not match at all. Second, a fast collaborative filtering algorithm that utilizes k-NN graph is presented. The main idea of this approach is to reverse the process of finding k-nearest neighbors in item-based collaborative filtering. Last, we propose a fast approximate algorithm for k-NN search by selecting query-specific signatures from a signature pool to pick high-quality k-NN candidates.The experimental results show that the proposed algorithms guarantee a high level of accuracy while also being much faster than the other algorithms over different types of search tasks and datasets.Abstract i Contents iii List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Fast Approximation . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Versatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Our Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Greedy Filtering . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Signature Selection LSH . . . . . . . . . . . . . . . . . . . 7 1.2.3 Reversed CF . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 2 Background and Related Work 14 2.1 k-NN Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Locality Sensitive Hashing . . . . . . . . . . . . . . . . . . 15 2.1.2 LSH-based k-NN Search . . . . . . . . . . . . . . . . . . . 16 2.2 k-NN Graph Construction . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 LSH-based Approach . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Clustering-based Approach . . . . . . . . . . . . . . . . . 19 2.2.3 Heuristic-based Approach . . . . . . . . . . . . . . . . . . 20 2.2.4 Similarity Join . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 3 Fast Approximate k-NN Graph Construction 26 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Constructing a k-Nearest Neighbor Graph . . . . . . . . . . . . . 29 3.3.1 Greedy Filtering . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 Prefix Selection Scheme . . . . . . . . . . . . . . . . . . . 32 3.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Graph Construction Time . . . . . . . . . . . . . . . . . . 39 3.4.3 Graph Accuracy . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 44 3.5.2 Performance Comparison . . . . . . . . . . . . . . . . . . 48 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Chapter 4 Fast Collaborative Filtering 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Fast Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Nearest Neighbor Graph Construction . . . . . . . . . . . 58 4.3.2 Fast Recommendation Algorithm . . . . . . . . . . . . . . 60 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 64 4.4.2 Overall Comparison . . . . . . . . . . . . . . . . . . . . . 65 4.4.3 Effects of Parameter Changes . . . . . . . . . . . . . . . . 68 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 5 Fast Approximate k-NN Search 72 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Signature Selection LSH . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1 Data-dependent LSH . . . . . . . . . . . . . . . . . . . . . 75 5.2.2 Signature Pool Generation . . . . . . . . . . . . . . . . . . 76 5.2.3 Signature Selection . . . . . . . . . . . . . . . . . . . . . . 79 5.2.4 Optimization Techniques . . . . . . . . . . . . . . . . . . 83 5.3 S2LSH for Graph Construction . . . . . . . . . . . . . . . . . . . 84 5.3.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.2 Signature Selection . . . . . . . . . . . . . . . . . . . . . . 84 5.3.3 Optimization Techniques . . . . . . . . . . . . . . . . . . 85 5.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 87 5.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 91 5.5.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . 97 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter 6 Conclusion 103 Bibliography 105 초록 113Docto
    corecore