30,290 research outputs found

    Goal-Driven Query Answering for Existential Rules with Equality

    Full text link
    Inspired by the magic sets for Datalog, we present a novel goal-driven approach for answering queries over terminating existential rules with equality (aka TGDs and EGDs). Our technique improves the performance of query answering by pruning the consequences that are not relevant for the query. This is challenging in our setting because equalities can potentially affect all predicates in a dataset. We address this problem by combining the existing singularization technique with two new ingredients: an algorithm for identifying the rules relevant to a query and a new magic sets algorithm. We show empirically that our technique can significantly improve the performance of query answering, and that it can mean the difference between answering a query in a few seconds or not being able to process the query at all

    Combined FO rewritability for conjunctive query answering in DL-Lite

    Get PDF
    Standard description logic (DL) reasoning services such as satisfiability and subsumption mainly aim to support TBox design. When the design stage is over and the TBox is used in an actual application, it is usually combined with instance data stored in an ABox, and therefore query answering becomes the most importan

    On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark

    Full text link
    Querying very large RDF data sets in an efficient manner requires a sophisticated distribution strategy. Several innovative solutions have recently been proposed for optimizing data distribution with predefined query workloads. This paper presents an in-depth analysis and experimental comparison of five representative and complementary distribution approaches. For achieving fair experimental results, we are using Apache Spark as a common parallel computing framework by rewriting the concerned algorithms using the Spark API. Spark provides guarantees in terms of fault tolerance, high availability and scalability which are essential in such systems. Our different implementations aim to highlight the fundamental implementation-independent characteristics of each approach in terms of data preparation, load balancing, data replication and to some extent to query answering cost and performance. The presented measures are obtained by testing each system on one synthetic and one real-world data set over query workloads with differing characteristics and different partitioning constraints.Comment: 16 pages, 3 figure
    corecore