20,644 research outputs found

    Efficient pruning of large knowledge graphs

    Get PDF
    In this paper we present an efficient and highly accurate algorithm to prune noisy or over-ambiguous knowledge graphs given as input an extensional definition of a domain of interest, namely as a set of instances or concepts. Our method climbs the graph in a bottom-up fashion, iteratively layering the graph and pruning nodes and edges in each layer while not compromising the connectivity of the set of input nodes. Iterative layering and protection of pre-defined nodes allow to extract semantically coherent DAG structures from noisy or over-ambiguous cyclic graphs, without loss of information and without incurring in computational bottlenecks, which are the main problem of stateof- the-art methods for cleaning large, i.e., Webscale, knowledge graphs. We apply our algorithm to the tasks of pruning automatically acquired taxonomies using benchmarking data from a SemEval evaluation exercise, as well as the extraction of a domain-adapted taxonomy from theWikipedia category hierarchy. The results show the superiority of our approach over state-of-art algorithms in terms of both output quality and computational efficiency

    Efficient pruning of large knowledge graphs

    Get PDF
    In this paper we present an efficient and highly accurate algorithm to prune noisy or over-ambiguous knowledge graphs given as input an extensional definition of a domain of interest, namely as a set of instances or concepts. Our method climbs the graph in a bottom-up fashion, iteratively layering the graph and pruning nodes and edges in each layer while not compromising the connectivity of the set of input nodes. Iterative layering and protection of pre-defined nodes allow to extract semantically coherent DAG structures from noisy or over-ambiguous cyclic graphs, without loss of information and without incurring in computational bottlenecks, which are the main problem of stateof- the-art methods for cleaning large, i.e., Webscale, knowledge graphs. We apply our algorithm to the tasks of pruning automatically acquired taxonomies using benchmarking data from a SemEval evaluation exercise, as well as the extraction of a domain-adapted taxonomy from theWikipedia category hierarchy. The results show the superiority of our approach over state-of-art algorithms in terms of both output quality and computational efficiency

    LoRAShear: Efficient Large Language Model Structured Pruning and Knowledge Recovery

    Full text link
    Large Language Models (LLMs) have transformed the landscape of artificial intelligence, while their enormous size presents significant challenges in terms of computational costs. We introduce LoRAShear, a novel efficient approach to structurally prune LLMs and recover knowledge. Given general LLMs, LoRAShear at first creates the dependency graphs over LoRA modules to discover minimally removal structures and analyze the knowledge distribution. It then proceeds progressive structured pruning on LoRA adaptors and enables inherent knowledge transfer to better preserve the information in the redundant structures. To recover the lost knowledge during pruning, LoRAShear meticulously studies and proposes a dynamic fine-tuning schemes with dynamic data adaptors to effectively narrow down the performance gap to the full models. Numerical results demonstrate that by only using one GPU within a couple of GPU days, LoRAShear effectively reduced footprint of LLMs by 20% with only 1.0% performance degradation and significantly outperforms state-of-the-arts. The source code will be available at https://github.com/microsoft/lorashear

    Mining Frequent Neighborhood Patterns in Large Labeled Graphs

    Full text link
    Over the years, frequent subgraphs have been an important sort of targeted patterns in the pattern mining literatures, where most works deal with databases holding a number of graph transactions, e.g., chemical structures of compounds. These methods rely heavily on the downward-closure property (DCP) of the support measure to ensure an efficient pruning of the candidate patterns. When switching to the emerging scenario of single-graph databases such as Google Knowledge Graph and Facebook social graph, the traditional support measure turns out to be trivial (either 0 or 1). However, to the best of our knowledge, all attempts to redefine a single-graph support resulted in measures that either lose DCP, or are no longer semantically intuitive. This paper targets mining patterns in the single-graph setting. We resolve the "DCP-intuitiveness" dilemma by shifting the mining target from frequent subgraphs to frequent neighborhoods. A neighborhood is a specific topological pattern where a vertex is embedded, and the pattern is frequent if it is shared by a large portion (above a given threshold) of vertices. We show that the new patterns not only maintain DCP, but also have equally significant semantics as subgraph patterns. Experiments on real-life datasets display the feasibility of our algorithms on relatively large graphs, as well as the capability of mining interesting knowledge that is not discovered in prior works.Comment: 9 page

    Deep Expander Networks: Efficient Deep Networks from Graph Theory

    Full text link
    Efficient CNN designs like ResNets and DenseNet were proposed to improve accuracy vs efficiency trade-offs. They essentially increased the connectivity, allowing efficient information flow across layers. Inspired by these techniques, we propose to model connections between filters of a CNN using graphs which are simultaneously sparse and well connected. Sparsity results in efficiency while well connectedness can preserve the expressive power of the CNNs. We use a well-studied class of graphs from theoretical computer science that satisfies these properties known as Expander graphs. Expander graphs are used to model connections between filters in CNNs to design networks called X-Nets. We present two guarantees on the connectivity of X-Nets: Each node influences every node in a layer in logarithmic steps, and the number of paths between two sets of nodes is proportional to the product of their sizes. We also propose efficient training and inference algorithms, making it possible to train deeper and wider X-Nets effectively. Expander based models give a 4% improvement in accuracy on MobileNet over grouped convolutions, a popular technique, which has the same sparsity but worse connectivity. X-Nets give better performance trade-offs than the original ResNet and DenseNet-BC architectures. We achieve model sizes comparable to state-of-the-art pruning techniques using our simple architecture design, without any pruning. We hope that this work motivates other approaches to utilize results from graph theory to develop efficient network architectures.Comment: ECCV'1
    • …
    corecore