862 research outputs found

    A Cross-System Approach for Multimedia Services with IP Multicast in 4G Networks

    Get PDF
    The increased demand for multimedia services by mobile end users in recent years have driven both Broadcast and Wireless Network operators to develop new systems and architectures for the deployment of such services. The proposed solutions are nonetheless limited either in terms of QoS or Capabilities to deliver new interactive services. This paper highlights strengths and drawbacks of the existing technologies in terms of QoS, Security and Mobility. In order to fill the gap between current solutions we propose a new architecture that builds itself on the synergies created by a heterogeneous network made of existing delivering technologies, such as 3GPP/MBMS and DVB, where services can be delivered to end-users in the most appropriate way for end-users and operators alike. A prototype implementation is further described.EU project - IST-2002- 506997 Daidalos I

    Vehicle Navigation Service Based on Real-Time Traffic Information

    Get PDF
    GNSS-assisted vehicle navigation services are nowadays very common in most of the developed countries. However, most of those services are either delivered through proprietary technologies, or fall short in flexibility because of the limited capability to couple road information with real-time traffic information. This paper presents the motivations and a brief summary of a vehicle navigation service based on real-time traffic information, delivered through an open protocol that is currently under standardization in the Open Mobile Alliance forum

    An architecture for distributed ledger-based M2M auditing for Electric Autonomous Vehicles

    Get PDF
    Electric Autonomous Vehicles (EAVs) promise to be an effective way to solve transportation issues such as accidents, emissions and congestion, and aim at establishing the foundation of Machine-to-Machine (M2M) economy. For this to be possible, the market should be able to offer appropriate charging services without involving humans. The state-of-the-art mechanisms of charging and billing do not meet this requirement, and often impose service fees for value transactions that may also endanger users and their location privacy. This paper aims at filling this gap and envisions a new charging architecture and a billing framework for EAV which would enable M2M transactions via the use of Distributed Ledger Technology (DLT)

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications

    On M2M Micropayments : A Case Study of Electric Autonomous Vehicles

    Get PDF
    The proliferation of electric vehicles has spurred the research interest in technologies associated with it, for instance, batteries, and charging mechanisms. Moreover, the recent advancements in autonomous cars also encourage the enabling technologies to integrate and provide holistic applications. To this end, one key requirement for electric vehicles is to have an efficient, secure, and scalable infrastructure and framework for charging, billing, and auditing. However, the current manual charging systems for EVs may not be applicable to the autonomous cars that demand new, automatic, secure, efficient, and scalable billing and auditing mechanism. Owing to the distributed systems such as blockchain technology, in this paper, we propose a new charging and billing mechanism for electric vehicles that charge their batteries in a charging-on-the-move fashion. To meet the requirements of billing in electric vehicles, we leverage distributed ledger technology (DLT), a distributed peer-to-peer technology for micro-transactions. Our proof-of-concept implementation of the billing framework demonstrates the feasibility of such system in electric vehicles. It is also worth noting that the solution can easily be extended to the electric autonomous cars (EACs)

    Optimization of vehicular networks in smart cities: from agile optimization to learnheuristics and simheuristics

    Get PDF
    Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.Peer ReviewedPostprint (published version

    N-Screen Application Framework

    Get PDF
    Smartphones and tablets with advanced computing ability and connectivity have already become indispensable in our daily lives. As operating systems of these computer-like handheld devices are getting more mature and stable, many users want physically separated devices to interact with one another and with shared resources in real time. Those devices may have the same type of operating systems, such as sharing between android smartphone and tablets. However, sometimes the sharing occurs among different operating systems. A user may want to use a smartphone to control the menu while the image presentation is displaying on the Internet Protocol television (IPTV), as well as the audio on a personal computer. This scenario brings about the motivation of this thesis. This thesis proposes an architecture that allows for sharing resources among many devices with separated screens at real-time. Compared with traditional mobile application framework, instead of the user experience on a specific device, the consistent user experience across multiple devices becomes the key concern. This research introduces a novel approach to implement the classical Model-View-Controller (MVC) framework in a distributed manner with a multi-layered distributed controller. To ensure consistent user experiences across multiple devices with di erent platforms, this research also adopts a channel-based Publish/Subscribe with effective server push state synchronization. The experiments evaluate the portability, message travelling latency improvement and bandwidth optimization. The results of those experiments prove the advantages of the n-Screen Application Framework (NSAF) both in portability that allows deployment on multiple devices from different manufacturers and performance improvement (both in latency and bandwidth consumption) while comparing with traditional data dissemination scenarios
    corecore